Many‐Exciton Theory for Multiple Quantum‐Well Structures

The many-exciton theory of highly excited semiconductors is reformulated in order to apply it to the case of a quasi two-dimensional confinement of electrons and holes in a multiple quantum-well structure. Using simple variational ansatzes for the exciton wave function in the low excitation limit density dependent exciton parameters are calculated for a GaAs-GaAlAs multiple quantum-well system. In contrast to bulk material but in agreement with experimental findings a blue shift of the excitonic resonance with increasing excitation intensity is obtained. The results are used to demonstrate nonlinear optical behaviour, especially bistabilities, for such systems. Die Vielexzitonen-Theorie hochangeregter Halbleiter wird fur den Fall der quasizweidimensionalen Begrenzung von Elektronen und Lochern in Vielquantentopfstrukturen umformuliert. Unter Benutzung eines einfachen Variationsansatzes fur die Exzitonwellenfunktion im Grenzfall niedriger Anregungsdichte werden fur ein GaAsGaAlAsVielquantentopf-System dichteabhangige Exziton-Parameter berechnet. In Ubereinstimmung mit experimentellen Ergebnissen und im Gegensatz zum Volumenmaterial wird eine Blauverschiebung der Exzitonenresonanz mit wach-sender Anregungsintensitat erhalten. Die Ergebnisse werden zur Demonstration nichtlinearen optischen Verhaltens solcher Systeme – insbesondere von Bistabilitaten — benutzt.

[1]  Leroy L. Chang,et al.  Exciton binding energy in quantum wells , 1982 .

[2]  V. May,et al.  Excited States and Collective Excitations in a Dense Gas of Excitons , 1984 .

[3]  D. Miller,et al.  Room-temperature excitonic nonlinear-optical effects in semiconductor quantum-well structures , 1985 .

[4]  R. Zimmermann,et al.  Influence of Exciton Gas and Electron—Hole Plasma on Exciton Energy Levels , 1980 .

[5]  M. Lannoo,et al.  Wannier excitons in GaAs-Ga1−xAlxAsquantum-well structures: Influence of the effective-mass mismatch , 1984 .

[6]  N. Peyghambarian,et al.  Blue Shift of the Exciton Resonance due to Exciton-Exciton Interactions in a Multiple-Quantum-Well Structure , 1984 .

[7]  Miller,et al.  Theory of transient excitonic optical nonlinearities in semiconductor quantum-well structures. , 1985, Physical review. B, Condensed matter.

[8]  W. Wiegmann,et al.  Room‐temperature excitonic optical bistability in a GaAs‐GaAlAs superlattice étalon , 1982 .

[9]  T. Amand,et al.  ELECTRON-HOLE INTERACTION IN THE PRESENCE OF EXCITONS , 1984 .

[10]  E. Hanamura Theory of Many Wannier Excitons. I , 1974 .

[11]  V. May,et al.  Nonequilibrium Green's functions and kinetic equations for highly excited semiconductors , 1986 .

[12]  Emil Wolf,et al.  Principles of Optics: Contents , 1999 .

[13]  Ronald L. Greene,et al.  Energy levels of Wannier excitons in G a A s − Ga 1 − x Al x As quantum-well structures , 1984 .

[14]  H. Gibbs,et al.  Optical nonlinearity, bistability, and signal processing in semiconductors , 1985 .

[15]  Won-Tien Tsang,et al.  Observation of the excited level of excitons in GaAs quantum wells , 1981 .

[16]  K. Henneberger,et al.  Many‐Body Theory for the Dense Exciton Gas of Direct Semiconductors I. General Considerations , 1985 .

[17]  R. Zimmermann,et al.  Nonlinear Exciton Transmission in CdS Non‐Homogeneous and Non‐Stationary Model Calculations , 1984 .

[18]  V. May,et al.  Some Evidence for the High Density Phase of Excitons in CdS , 1980 .

[19]  K. Henneberger,et al.  Many-Body Theory for the Dense Exciton Gas of Direct Semiconductors II. Calculation of Exciton Level Shift and Damping in Dependence on Exciton Density† , 1985 .

[20]  V. May,et al.  Many-Body Theory for the Dense Exciton Gas of Direct Semiconductors. III. Response of the Many-Exciton System on an Externally Driven Light Field†‡ , 1985 .