Analyzing rare event, anomaly, novelty and outlier detection terms under the supervised classification framework

[1]  Sanjoy Dasgupta,et al.  Early Classification of Time Series by Simultaneously Optimizing the Accuracy and Earliness , 2018, IEEE Transactions on Neural Networks and Learning Systems.

[2]  Zhi-Hua Zhou,et al.  Multi-Label Learning with Emerging New Labels , 2018, IEEE Transactions on Knowledge and Data Engineering.

[3]  S. Miri Rostami,et al.  Extracting Predictor Variables to Construct Breast Cancer Survivability Model with Class Imbalance Problem , 2018 .

[4]  Daniela Montaldi,et al.  How do memory systems detect and respond to novelty? , 2018, Neuroscience Letters.

[5]  Zhi-Hua Zhou,et al.  Social Stream Classification with Emerging New Labels , 2018, PAKDD.

[6]  Jaideep Srivastava,et al.  ML Approach for Early Detection of Sleep Apnea Treatment Abandonment: A Case Study , 2018, DH.

[7]  Alfredo De Santis,et al.  Using generative adversarial networks for improving classification effectiveness in credit card fraud detection , 2017, Inf. Sci..

[8]  Abdelwahab Hamou-Lhadj,et al.  An anomaly detection system based on variable N-gram features and one-class SVM , 2017, Inf. Softw. Technol..

[9]  Zhao Chen,et al.  Anomaly detection methods for bankruptcy prediction , 2017, 2017 4th International Conference on Systems and Informatics (ICSAI).

[10]  Peter E.D. Love,et al.  Predicting Safety Risks in Deep Foundation Pits in Subway Infrastructure Projects: Support Vector Machine Approach , 2017, J. Comput. Civ. Eng..

[11]  Mohak Shah,et al.  Deep learning on symbolic representations for large-scale heterogeneous time-series event prediction , 2017, 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[12]  Enrico Zio,et al.  Estimation of rare event probabilities in power transmission networks subject to cascading failures , 2017, Reliab. Eng. Syst. Saf..

[13]  Alexandros Iosifidis,et al.  Graph Embedded One-Class Classifiers for media data classification , 2016, Pattern Recognit..

[14]  Neminath Hubballi,et al.  OCPAD: One class Naive Bayes classifier for payload based anomaly detection , 2016, Expert Syst. Appl..

[15]  Arthur Zimek,et al.  On the Evaluation of Outlier Detection and One-Class Classification Methods , 2016, 2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA).

[16]  Chuan Ding,et al.  Influential factors of red-light running at signalized intersection and prediction using a rare events logistic regression model. , 2016, Accident; analysis and prevention.

[17]  Christopher Leckie,et al.  High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning , 2016, Pattern Recognit..

[18]  Rita P. Ribeiro,et al.  Sequential anomalies: a study in the Railway Industry , 2016, Machine Learning.

[19]  Franz Pfeiffer,et al.  Novelty detection of foreign objects in food using multi-modal X-ray imaging , 2016 .

[20]  Sridha Sridharan,et al.  Detecting rare events using Kullback-Leibler divergence: A weakly supervised approach , 2016, Expert Syst. Appl..

[21]  Iason Papaioannou,et al.  Bayesian analysis of rare events , 2016, J. Comput. Phys..

[22]  J.-M. Bourinet,et al.  Rare-event probability estimation with adaptive support vector regression surrogates , 2016, Reliab. Eng. Syst. Saf..

[23]  Zhi-Hua Zhou,et al.  Classification Under Streaming Emerging New Classes: A Solution Using Completely-Random Trees , 2016, IEEE Transactions on Knowledge and Data Engineering.

[24]  André Carlos Ponce de Leon Ferreira de Carvalho,et al.  MINAS: multiclass learning algorithm for novelty detection in data streams , 2016, Data Mining and Knowledge Discovery.

[25]  F. Dufrenois,et al.  One class proximal support vector machines , 2016, Pattern Recognit..

[26]  M. Balesdent,et al.  Rare Event Probability Estimation in the Presence of Epistemic Uncertainty on Input Probability Distribution Parameters , 2016 .

[27]  Usue Mori Carrascal Contributions to time series data mining departing from the problem of road travel time modeling , 2015 .

[28]  François Laviolette,et al.  Domain-Adversarial Training of Neural Networks , 2015, J. Mach. Learn. Res..

[29]  Alexandros Nanopoulos,et al.  Reverse Nearest Neighbors in Unsupervised Distance-Based Outlier Detection , 2015, IEEE Transactions on Knowledge and Data Engineering.

[30]  Sridha Sridharan,et al.  Detecting rare events using Kullback-Leibler divergence , 2015, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[31]  Charu C. Aggarwal,et al.  Outlier Detection for Temporal Data: A Survey , 2014, IEEE Transactions on Knowledge and Data Engineering.

[32]  David A. Clifton,et al.  A review of novelty detection , 2014, Signal Process..

[33]  Arthur Zimek,et al.  Discriminative features for identifying and interpreting outliers , 2014, 2014 IEEE 30th International Conference on Data Engineering.

[34]  Caroline Petitjean,et al.  One class random forests , 2013, Pattern Recognit..

[35]  Charu C. Aggarwal,et al.  Classification and Adaptive Novel Class Detection of Feature-Evolving Data Streams , 2013, IEEE Transactions on Knowledge and Data Engineering.

[36]  Charu C. Aggarwal,et al.  Outlier Analysis , 2013, Springer New York.

[37]  Carlos Agón,et al.  Time-series data mining , 2012, CSUR.

[38]  Dong Zhou,et al.  Translation techniques in cross-language information retrieval , 2012, CSUR.

[39]  Carla E. Brodley,et al.  FRaC: a feature-modeling approach for semi-supervised and unsupervised anomaly detection , 2012, Data Mining and Knowledge Discovery.

[40]  D. Yen,et al.  Identifying the signs of fraudulent accounts using data mining techniques , 2010, Comput. Hum. Behav..

[41]  See-Kiong Ng,et al.  SPO: Structure Preserving Oversampling for Imbalanced Time Series Classification , 2011, 2011 IEEE 11th International Conference on Data Mining.

[42]  Zhi-Hua Zhou,et al.  iBAT: detecting anomalous taxi trajectories from GPS traces , 2011, UbiComp '11.

[43]  Longin Jan Latecki,et al.  Improving SVM classification on imbalanced time series data sets with ghost points , 2011, Knowledge and Information Systems.

[44]  Jean-Michel Marin,et al.  Bounding rare event probabilities in computer experiments , 2011, Comput. Stat. Data Anal..

[45]  Ross W. Gayler,et al.  A Comprehensive Survey of Data Mining-based Fraud Detection Research , 2010, ArXiv.

[46]  D. Hand,et al.  Bayesian anomaly detection methods for social networks , 2010, 1011.1788.

[47]  H. Wehrmann,et al.  Eruption time series statistically examined: Probabilities of future eruptions at Villarrica and Llaima Volcanoes, Southern Volcanic Zone, Chile , 2010 .

[48]  Bhavani M. Thuraisingham,et al.  Integrating Novel Class Detection with Classification for Concept-Drifting Data Streams , 2009, ECML/PKDD.

[49]  Seong-Pyo Cheon,et al.  Bayesian networks based rare event prediction with sensor data , 2009, Knowl. Based Syst..

[50]  VARUN CHANDOLA,et al.  Anomaly detection: A survey , 2009, CSUR.

[51]  Leonardo Dueñas-Osorio,et al.  Cascading failures in complex infrastructure systems , 2009 .

[52]  Felix Naumann,et al.  Data fusion , 2009, CSUR.

[53]  Philip S. Yu,et al.  Stop Chasing Trends: Discovering High Order Models in Evolving Data , 2008, 2008 IEEE 24th International Conference on Data Engineering.

[54]  André Carlos Ponce de Leon Ferreira de Carvalho,et al.  OLINDDA: a cluster-based approach for detecting novelty and concept drift in data streams , 2007, SAC '07.

[55]  Mohammad Zulkernine,et al.  Anomaly Based Network Intrusion Detection with Unsupervised Outlier Detection , 2006, 2006 IEEE International Conference on Communications.

[56]  M. Eeckhaut,et al.  Prediction of landslide susceptibility using rare events logistic regression: A case-study in the Flemish Ardennes (Belgium) , 2006 .

[57]  Joseph F. Murray,et al.  Machine Learning Methods for Predicting Failures in Hard Drives: A Multiple-Instance Application , 2005, J. Mach. Learn. Res..

[58]  Victoria J. Hodge,et al.  A Survey of Outlier Detection Methodologies , 2004, Artificial Intelligence Review.

[59]  M. Hulme,et al.  Does climate adaptation policy need probabilities? , 2004 .

[60]  James M. Rehg,et al.  Learning a Rare Event Detection Cascade by Direct Feature Selection , 2003, NIPS.

[61]  David M. J. Tax,et al.  One-class classification , 2001 .

[62]  T. Bedford,et al.  Probabilistic Risk Analysis: Foundations and Methods , 2001 .

[63]  A. Hadi,et al.  BACON: blocked adaptive computationally efficient outlier nominators , 2000 .

[64]  Haym Hirsh,et al.  Learning to Predict Rare Events in Event Sequences , 1998, KDD.

[65]  James D. Hamilton Time Series Analysis , 1994 .

[66]  H. S. Teng,et al.  Adaptive real-time anomaly detection using inductively generated sequential patterns , 1990, Proceedings. 1990 IEEE Computer Society Symposium on Research in Security and Privacy.

[67]  Lopamudra Dey,et al.  Outlier Detection and Removal Algorithm in K-Means and Hierarchical Clustering , 2017 .

[68]  Bart Vanrumste,et al.  One-class classification of point patterns of extremes , 2016, J. Mach. Learn. Res..

[69]  George Yannis,et al.  Predicting road accidents: a rare-events modeling approach , 2016 .

[70]  Concha Bielza,et al.  Dynamic Bayesian Network-Based Anomaly Detection for In-Process Visual Inspection of Laser Surface Heat Treatment , 2016, ML4CPS.

[71]  Qinbao Song,et al.  A Fast Clustering-Based Feature Subset Selection Algorithm for High-Dimensional Data , 2013, IEEE Transactions on Knowledge and Data Engineering.

[72]  Mia Hubert,et al.  Robust statistics for outlier detection , 2011, WIREs Data Mining Knowl. Discov..

[73]  Chao Lan,et al.  Anomaly Detection , 2018, Encyclopedia of GIS.

[74]  Douglas A. Reynolds,et al.  Gaussian Mixture Models , 2018, Encyclopedia of Biometrics.

[75]  Yuxin Ding,et al.  Host-based intrusion detection using dynamic and static behavioral models , 2003, Pattern Recognit..

[76]  Gary King,et al.  Logistic Regression in Rare Events Data , 2001, Political Analysis.

[77]  Roger M. Cooke,et al.  Probabilistic Risk Analysis: Uncertainty modeling and risk measurement , 2001 .

[78]  T.Y. Lin,et al.  Anomaly detection , 1994, Proceedings New Security Paradigms Workshop.