Predicting Yield Stress in a Nano-Precipitate Strengthened Austenitic Steel by Integrating Multi Length-Scale Simulations and Experiments

[1]  E. Antillon,et al.  Investigation of chemical short range order strengthening in a model Fe–12Ni–18Cr (at. %) stainless steel alloy: A modeling and experimental study , 2023, Acta Materialia.

[2]  James Ze Wang,et al.  Achieving better synergy of strength and ductility by adjusting size and volume fraction of coherent κ’–carbides in a lightweight steel , 2022, Materials Science and Engineering: A.

[3]  Bao‐Guang Zhang,et al.  D03 order strengthening improves strength–ductility balance of Ni-containing high specific strength steel via annealing followed by fast aging , 2022, Materials Science and Engineering: A.

[4]  E. Antillon,et al.  Ab initio, 2022, Physical Review Materials.

[5]  Tao Wang,et al.  Modeling antiphase boundary energies of Ni3Al-based alloys using automated density functional theory and machine learning , 2022, npj Computational Materials.

[6]  J. Segurado,et al.  A generalized line tension model for precipitate strengthening in metallic alloys , 2022, European Journal of Mechanics - A/Solids.

[7]  J. Michopoulos,et al.  The interplay of local chemistry and plasticity in controlling microstructure formation during laser powder bed fusion of metals , 2021, Additive Manufacturing.

[8]  Gyeongbae Park,et al.  κ-Carbide assisted nucleation of B2: A novel pathway to develop high specific strength steels , 2021, Acta Materialia.

[9]  P. Liaw,et al.  High throughput synthesis enabled exploration of CoCrFeNi-based high entropy alloys , 2021, Journal of Materials Science & Technology.

[10]  R. Fonda,et al.  Mn-stabilized austenitic steel strengthened by nano-scale β-NiAl (B2), FCC-Cu, and carbides via ICME design , 2021, Scripta Materialia.

[11]  J. El-Awady,et al.  The effect of local chemical ordering on dislocation activity in multi-principle element alloys: A three-dimensional discrete dislocation dynamics study , 2021, Acta Materialia.

[12]  D. Farkas,et al.  Model interatomic potentials for Fe–Ni–Cr–Co–Al high-entropy alloys , 2020, Journal of Materials Research.

[13]  D. Field,et al.  Microstructural Influence on Mechanical Properties of a Lightweight Ultrahigh Strength Fe-18Mn-10Al-0.9C-5Ni (wt%) Steel , 2020, Metals.

[14]  Joshua C. Crone,et al.  Analytic model for the Orowan dislocation-precipitate bypass mechanism , 2020 .

[15]  Gyeongbae Park,et al.  Improvement of strength – ductility balance of B2-strengthened lightweight steel , 2020 .

[16]  C. Nam,et al.  Effect of B2 morphology on the mechanical properties of B2-strengthened lightweight steels , 2019, Scripta Materialia.

[17]  Huijun Li,et al.  The effect of isothermal aging on microstructure and mechanical behavior of modified 2.5Al alumina-forming austenitic steel , 2019, Materials Science and Engineering: A.

[18]  Joshua C. Crone,et al.  Analytic model for the line tension of a bowing dislocation segment , 2019, Philosophical Magazine Letters.

[19]  Hansoo Kim Strain hardening of novel high Al low-density steel consisting of austenite matrix and B2-ordered intermetallic second phase in the perspective of non-cell forming face-centered-cubic alloy with high stacking fault energy , 2019, Scripta Materialia.

[20]  D. Tang,et al.  Microstructure characterization of Cu-rich B2 intermetallic nanoprecipitates in an austenite-based High specific strength steel , 2018, IOP Conference Series: Materials Science and Engineering.

[21]  J. Segurado,et al.  Discrete dislocation dynamics simulations of dislocation-θ′ precipitate interaction in Al-Cu alloys , 2018, Journal of the Mechanics and Physics of Solids.

[22]  D. Dunand,et al.  Dislocation dynamics modeling of precipitation strengthening in Fe–Ni–Al–Cr ferritic superalloys , 2017 .

[23]  Michael Walter,et al.  The atomic simulation environment-a Python library for working with atoms. , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[24]  C. Liu,et al.  Co-precipitation of nanoscale particles in steels with ultra-high strength for a new era , 2017 .

[25]  David J. Larson,et al.  Modern Focused-Ion-Beam-Based Site-Specific Specimen Preparation for Atom Probe Tomography , 2017, Microscopy and Microanalysis.

[26]  William A. Curtin,et al.  Solute strengthening in random alloys , 2017 .

[27]  M. Qi,et al.  Copper precipitation behavior and mechanical properties of Cu-bearing 316L austenitic stainless steel: A comprehensive cross-correlation study , 2016 .

[28]  William A. Curtin,et al.  Theory of strengthening in fcc high entropy alloys , 2016 .

[29]  Michael K Miller,et al.  Precipitate transformation from NiAl-type to Ni2AlMn-type and its influence on the mechanical properties of high-strength steels , 2016 .

[30]  C. Liu,et al.  Group precipitation and age hardening of nanostructured Fe-based alloys with ultra-high strengths , 2016, Scientific Reports.

[31]  P. Puschnig,et al.  Effect of thermal lattice expansion on the stacking fault energies of fcc Fe and Fe 75 Mn 25 alloy , 2016 .

[32]  M. Alava,et al.  Multiscale modeling of dislocation-precipitate interactions in Fe: From molecular dynamics to discrete dislocations. , 2016, Physical review. E.

[33]  W. Curtin,et al.  Robust atomistic calculation of dislocation line tension , 2015 .

[34]  Jaafar A. El-Awady,et al.  Microstructurally based cross-slip mechanisms and their effects on dislocation microstructure evolution in fcc crystals , 2015 .

[35]  Sangho Kim,et al.  Brittle intermetallic compound makes ultrastrong low-density steel with large ductility , 2015, Nature.

[36]  D. Seidman,et al.  Comparison between dislocation dynamics model predictions and experiments in precipitation-strengthened Al–Li–Sc alloys , 2014 .

[37]  E. Kozeschnik,et al.  Precipitate strengthening of non-spherical precipitates extended in 〈100〉 or {100} direction in fcc crystals , 2014 .

[38]  Xishan Xie,et al.  Coherent precipitation of copper in Super304H austenite steel , 2013 .

[39]  David L. Olmsted,et al.  Efficient stochastic generation of special quasirandom structures , 2013 .

[40]  David N. Seidman,et al.  Prediction of the yield strength of a secondary-hardening steel , 2013 .

[41]  Dong-Woo Suh,et al.  Fe–Al–Mn–C lightweight structural alloys: a review on the microstructures and mechanical properties , 2013, Science and technology of advanced materials.

[42]  E. Kozeschnik,et al.  Simulation of Precipitation Kinetics and Precipitation Strengthening of B2-precipitates in Martensitic PH 13–8 Mo Steel , 2012 .

[43]  C. Ambrosch-Draxl,et al.  Stacking-fault energy and anti-Invar effect in Fe-Mn alloy from first principles , 2012, 1201.5808.

[44]  W. Theisen,et al.  Nucleation and precipitation kinetics of M23C6 and M2N in an Fe–Mn–Cr–C–N austenitic matrix and their relationship with the sensitization phenomenon , 2011 .

[45]  Benoit Devincre,et al.  Orowan strengthening and forest hardening superposition examined by dislocation dynamics simulations , 2010 .

[46]  I. A. Abrikosov,et al.  Effect of magnetic disorder and strong electron correlations on the thermodynamics of CrN , 2010, 1006.3460.

[47]  Benoit Devincre,et al.  Dislocation dynamics simulations of precipitation hardening in Ni-based superalloys with high γ′ volume fraction , 2009 .

[48]  D. Dimiduk,et al.  Effects of Focused Ion Beam Induced Damage on the Plasticity of Micropillars , 2009 .

[49]  Michael K Miller,et al.  Review of Atom Probe FIB-Based Specimen Preparation Methods , 2007, Microscopy and Microanalysis.

[50]  D. S. Sarma,et al.  Analysis of flow behaviour of an aluminium containing austenitic steel , 2007 .

[51]  D Lawrence,et al.  In situ site-specific specimen preparation for atom probe tomography. , 2007, Ultramicroscopy.

[52]  Athanasios Arsenlis,et al.  Enabling strain hardening simulations with dislocation dynamics , 2006 .

[53]  Akira Takeuchi,et al.  Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element , 2005 .

[54]  Gary S. Was,et al.  The relationship between hardness and yield stress in irradiated austenitic and ferritic steels , 2005 .

[55]  Roger E. Stoller,et al.  MD description of damage production in displacement cascades in copper and α-iron , 2003 .

[56]  J. Nie Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys , 2003 .

[57]  D. Miracle,et al.  Effect of the atomic size distribution on glass forming ability of amorphous metallic alloys , 2001 .

[58]  D. S. Sarma,et al.  Characterization of the age-hardening behavior of a precipitation-hardenable austenitic steel , 2001 .

[59]  M. L. Hamilton,et al.  An Investigation of Microstructures and Yield Strengths in Irradiated Austenitic Stainless Steels Using Small Specimen Techniques , 1996 .

[60]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[61]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[62]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[63]  C. Liu,et al.  Ordered intermetallic alloys, part I: Nickel and iron aluminides , 1993 .

[64]  E. Nembach Synergetic effects in the superposition of strengthening mechanisms , 1992 .

[65]  A. Pineau,et al.  Room temperature tensile properties of Fe-19wt.%Cr alloys precipitation hardened by the intermetallic compound NiAl , 1982 .

[66]  U. F. Kocks,et al.  The effect of dislocation self-interaction on the Orowan stress , 1973 .

[67]  M. Ashby Work hardening of dispersion-hardened crystals , 1966 .

[68]  A. N. Stroh Dislocations and Cracks in Anisotropic Elasticity , 1958 .

[69]  G. Sachs,et al.  Über den Mechanismus der Stahlhärtung , 1930 .

[70]  E. Kozeschnik,et al.  Particle strengthening in fcc crystals with prolate and oblate precipitates , 2012 .

[71]  U. F. Kocks,et al.  Physics and phenomenology of strain hardening: the FCC case , 2003 .

[72]  T. Gladman,et al.  Precipitation hardening in metals , 1999 .

[73]  A. Ardell,et al.  Precipitation hardening , 1985 .

[74]  B. Reppich Some new aspects concerning particle hardening mechanisms in γ' precipitating Ni-base alloys—I. Theoretical concept , 1982 .

[75]  J. Silcock,et al.  Strengthening Mechanisms in γ′ Precipitating Alloys , 1970 .