Cephalopod-inspired optical engineering of human cells

[1]  Rylan Kautz,et al.  Dynamic materials inspired by cephalopods , 2016, Organic and Hybrid Sensors and Bioelectronics XIII.

[2]  Thomas L. Williams,et al.  Dynamic pigmentary and structural coloration within cephalopod chromatophore organs , 2019, Nature Communications.

[3]  Lizhe Tan,et al.  Introduction to Digital Signal Processing , 2019, Digital Signal Processing.

[4]  Matthew C. Good,et al.  Controllable protein phase separation and modular recruitment to form responsive membraneless organelles , 2018, Nature Communications.

[5]  Laura E Bagge,et al.  An introduction to color-changing systems from the cephalopod protein reflectin , 2018, Bioinspiration & biomimetics.

[6]  R. Hanlon,et al.  White reflection from cuttlefish skin leucophores , 2018, Bioinspiration & biomimetics.

[7]  R. Hanlon,et al.  Cephalopod Behaviour by Roger T. Hanlon , 2018 .

[8]  Yukio Ueda,et al.  Transportable and vibration-free full-field low-coherent quantitative phase microscope , 2018, BiOS.

[9]  Rylan Kautz,et al.  Protochromic Devices from a Cephalopod Structural Protein , 2017 .

[10]  L. Lai,et al.  Origin of the Reflectin Gene and Hierarchical Assembly of Its Protein , 2017, Current Biology.

[11]  R. Levenson,et al.  Molecular mechanism of reflectin’s tunable biophotonic control: Opportunities and limitations for new optoelectronics , 2017 .

[12]  Juan M. Guayasamin,et al.  A marvelous new glassfrog (Centrolenidae, Hyalinobatrachium) from Amazonian Ecuador , 2017, ZooKeys.

[13]  Rylan Kautz,et al.  Self‐Assembly of the Cephalopod Protein Reflectin , 2016, Advanced materials.

[14]  P. H. Yap,et al.  Cell refractive index for cell biology and disease diagnosis: past, present and future. , 2016, Lab on a chip.

[15]  Hiroki R Ueda,et al.  Whole-body and Whole-Organ Clearing and Imaging Techniques with Single-Cell Resolution: Toward Organism-Level Systems Biology in Mammals. , 2016, Cell chemical biology.

[16]  R. Levenson,et al.  Cyclable Condensation and Hierarchical Assembly of Metastable Reflectin Proteins, the Drivers of Tunable Biophotonics* , 2015, The Journal of Biological Chemistry.

[17]  Jeff W. Lichtman,et al.  Clarifying Tissue Clearing , 2015, Cell.

[18]  A. Gorodetsky,et al.  Infrared invisibility stickers inspired by cephalopods , 2015 .

[19]  D. Morse,et al.  Structures, Organization, and Function of Reflectin Proteins in Dynamically Tunable Reflective Cells* , 2015, The Journal of Biological Chemistry.

[20]  Guillaume Gomard,et al.  The role of random nanostructures for the omnidirectional anti-reflection properties of the glasswing butterfly , 2015, Nature Communications.

[21]  D. Morse,et al.  Experimental determination of refractive index of condensed reflectin in squid iridocytes , 2014, Journal of The Royal Society Interface.

[22]  S. Johnsen Hide and seek in the open sea: pelagic camouflage and visual countermeasures. , 2014, Annual review of marine science.

[23]  D. Morse,et al.  Dynamic biophotonics: female squid exhibit sexually dimorphic tunable leucophores and iridocytes , 2013, Journal of Experimental Biology.

[24]  Alon A Gorodetsky,et al.  Reconfigurable Infrared Camouflage Coatings from a Cephalopod Protein , 2013, Advanced materials.

[25]  G. Kattawar,et al.  Bright White Scattering from Protein Spheres in Color Changing, Flexible Cuttlefish Skin , 2013 .

[26]  Daniel E Morse,et al.  Membrane invaginations facilitate reversible water flux driving tunable iridescence in a dynamic biophotonic system , 2013, Proceedings of the National Academy of Sciences.

[27]  C. Depeursinge,et al.  Quantitative phase imaging in biomedicine , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[28]  Sönke Johnsen,et al.  Mesopelagic Cephalopods Switch between Transparency and Pigmentation to Optimize Camouflage in the Deep , 2011, Current Biology.

[29]  P. Brown,et al.  On the distribution of protein refractive index increments. , 2011, Biophysical journal.

[30]  S. Johnsen,et al.  The effects of salinity and temperature on the transparency of the grass shrimp Palaemonetes pugio , 2011, Journal of Experimental Biology.

[31]  S. Lukyanov,et al.  Fluorescent proteins and their applications in imaging living cells and tissues. , 2010, Physiological reviews.

[32]  Alison M. Sweeney,et al.  The role of protein assembly in dynamically tunable bio-optical tissues. , 2010, Biomaterials.

[33]  J. Messenger,et al.  On leucophores and the chromatic unit of Octopus vulgaris , 2009 .

[34]  Isaac N. Bankman,et al.  Handbook of medical image processing and analysis , 2009 .

[35]  Roger T Hanlon,et al.  Mechanisms and behavioural functions of structural coloration in cephalopods , 2009, Journal of The Royal Society Interface.

[36]  M. Miwa,et al.  Low-coherent quantitative phase microscope for nanometer-scale measurement of living cells morphology. , 2008, Optics express.

[37]  C. Fang-Yen,et al.  Tomographic phase microscopy , 2008, Nature Methods.

[38]  Kurt I. Anderson,et al.  Recent advances using green and red fluorescent protein variants , 2007, Applied Microbiology and Biotechnology.

[39]  R. Naik,et al.  The self-organizing properties of squid reflectin protein. , 2007, Nature materials.

[40]  K. Badizadegan,et al.  Live cell refractometry using microfluidic devices. , 2006, Optics letters.

[41]  Virginie Lousse,et al.  Optical properties of the iridescent organ of the comb-jellyfish Beroë cucumis (Ctenophora). , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  J. Slot,et al.  Improving structural integrity of cryosections for immunogold labeling , 1996, Histochemistry and Cell Biology.

[43]  E. Cuche,et al.  Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy. , 2005, Optics express.

[44]  T. Smart,et al.  HEK293 cell line: a vehicle for the expression of recombinant proteins. , 2005, Journal of pharmacological and toxicological methods.

[45]  K. Nugent,et al.  Refractive index measurement in viable cells using quantitative phase‐amplitude microscopy and confocal microscopy , 2005, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[46]  K. Tokuyasu Immunochemistry on ultrathin frozen sections , 1980, The Histochemical Journal.

[47]  D. Holdstock Past, present--and future? , 2005, Medicine, conflict, and survival.

[48]  Quinn Smithwick,et al.  Polarimetric imaging and blood vessel quantification. , 2004, Optics express.

[49]  M. McFall-Ngai,et al.  Reflectins: The Unusual Proteins of Squid Reflective Tissues , 2004, Science.

[50]  S. Johnsen,et al.  Hidden in Plain Sight: The Ecology and Physiology of Organismal Transparency , 2001, The Biological Bulletin.

[51]  Rahul S. Rajan,et al.  Specificity in intracellular protein aggregation and inclusion body formation , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[52]  W. Steen Absorption and Scattering of Light by Small Particles , 1999 .

[53]  MooreToby ABSORPTION AND SCATTERING OF LIGHT BY SMALL PARTICLES by C.F. Bohren and D.R. Huffman, Wiley Science Paperback Series, Chichester, UK, 1998, xiv530pp., List of references, index (34.95; pbk). , 1998 .

[54]  R. Tsien,et al.  green fluorescent protein , 2020, Catalysis from A to Z.

[55]  Z. Kam,et al.  Absorption and Scattering of Light by Small Particles , 1998 .

[56]  Richard A. Cloney,et al.  Chromatophore Organs, Reflector Cells, Iridocytes and Leucophores in Cephalopods , 1983 .

[57]  A. Spurr A low-viscosity epoxy resin embedding medium for electron microscopy. , 1969, Journal of ultrastructure research.