Atomic-scale investigation of H-trapping by fine NbC precipitates in a low C ferritic steel

[1]  J. Takahashi,et al.  Atomic-scale observation of hydrogen trap sites in bainite–austenite dual-phase steel by APT , 2021 .

[2]  K. Hono,et al.  Determination of the Chemical Compositions of Fine titanium Carbide and Niobium Carbide Precipitates in Isothermally Aged Ferritic Steel by Atom Probe Tomography Analysis , 2020, Microscopy and Microanalysis.

[3]  L. Qiao,et al.  Atomic-scale investigation of deep hydrogen trapping in NbC/α-Fe semi-coherent interfaces , 2020 .

[4]  Xiaogang Li,et al.  Dual role of nanosized NbC precipitates in hydrogen embrittlement susceptibility of lath martensitic steel , 2020 .

[5]  J. Cairney,et al.  Observation of hydrogen trapping at dislocations, grain boundaries, and precipitates , 2020, Science.

[6]  A. Lukoyanov,et al.  Vacancy ordered structures in a nonstoichiometric niobium carbide NbC0.83 , 2019, Mendeleev Communications.

[7]  J. Takahashi,et al.  Origin of hydrogen trapping site in vanadium carbide precipitation strengthening steel , 2018, Acta Materialia.

[8]  T. Dorin,et al.  Precipitation and clustering in a Ti-Mo steel investigated using atom probe tomography and small-angle neutron scattering , 2018 .

[9]  W. M. Rainforth,et al.  Direct observation of individual hydrogen atoms at trapping sites in a ferritic steel , 2017, Science.

[10]  G. Thompson,et al.  Atom Probe Tomography Study of Multi-microalloyed Carbide and Carbo-Nitride Precipitates and the Precipitation Sequence in Nb-Ti HSLA Steels , 2016, Metallurgical and Materials Transactions A.

[11]  H. Bhadeshia,et al.  Prevention of Hydrogen Embrittlement in Steels , 2016 .

[12]  C. C. Wong,et al.  Resolving the Morphology of Niobium Carbonitride Nano-Precipitates in Steel Using Atom Probe Tomography , 2014, Microscopy and Microanalysis.

[13]  D. Raabe,et al.  Understanding the detection of carbon in austenitic high-Mn steel using atom probe tomography. , 2013, Ultramicroscopy.

[14]  F. Xiao,et al.  The phase stability and mechanical properties of Nb–C system: Using first-principles calculations and nano-indentation , 2013 .

[15]  J. Takahashi,et al.  Direct observation of hydrogen-trapping sites in vanadium carbide precipitation steel by atom probe tomography , 2012 .

[16]  A. Deschamps,et al.  Hydrogen trapping by VC precipitates and structural defects in a high strength Fe–Mn–C steel studied by small-angle neutron scattering , 2012 .

[17]  J. Takahashi,et al.  Quantitative analysis of carbon content in cementite in steel by atom probe tomography. , 2011, Ultramicroscopy.

[18]  W. Jung,et al.  Ab initio calculation of interfacial energies between transition metal carbides and fcc iron , 2010 .

[19]  J. Takahashi,et al.  The first direct observation of hydrogen trapping sites in TiC precipitation-hardening steel through atom probe tomography , 2010 .

[20]  D. Blavette,et al.  Atom Probe Tomography I. Early Stages of Precipitation of NbC and NbN in Ferritic Steels , 2006 .

[21]  A. Deschamps,et al.  A small‐angle neutron scattering study of fine‐scale NbC precipitation kinetics in the α‐Fe–Nb–C system , 2006 .

[22]  K. Tsuzaki,et al.  Quantitative analysis on hydrogen trapping of TiC particles in steel , 2006 .

[23]  A. DeArdo,et al.  Niobium in modern steels , 2003 .

[24]  K. Tsuzaki,et al.  Hydrogen trapping in quenched and tempered 0.42C-0.30Ti steel containing bimodally dispersed TiC particles , 2003 .

[25]  Jai-Young Lee,et al.  The effect of the interface character of TiC particles on hydrogen trapping in steel , 1987 .

[26]  G. Pressouyre Hydrogen traps, repellers, and obstacles in steel; Consequences on hydrogen diffusion, solubility, and embrittlement , 1983 .

[27]  O. Nishikawa,et al.  Atom-probe study of hydrogen chemisorption on Fe and Ni , 1983 .

[28]  G. Pressouyre A classification of hydrogen traps in steel , 1979 .

[29]  K. Tsuzaki,et al.  Direct observation of hydrogen trapped by NbC in steel using small-angle neutron scattering , 2008 .