개인정보보호 분야의 연구자 네트워크와 성과 평가 프레임워크

개인정보 분야에서의 다양한 정보 보안 이슈가 발생함에 따라 해당 분야의 전문가를 확인하기 위한 프레임워크는 매우 중요한 영역이 되었다. 전문가 탐색과정은 주로 연구 업적 등을 통한 주관적인 평가가 일반적이지만 보다 객관적인 방식을 통한 선정이 매우 중요하다. 소셜 네트워크 분석기법의 응용이 다양한 영역에서 활용됨에 따라 본 연구는 개인정보보호분야의 전문가를 확인하고 해당 전문가들의 연구실적을 판단하기 위한 분석 프레임워크를 제시하고자 하였다. 본 연구는 연구 목적에 따라 개인정보보호 연구영역의 연구성과 자료를 바탕으로 소셜 네트워크 분석을 실시하고 핵심연구자의 성과를 분석하였다. 수집된 데이터는 연구의 공저자, 발행기관, 소속기관 등의 네트워크 구성에 활용되어 핵심전문가 집단을 관리하기 위한 프레임워크를 제시하였다. 본 연구는 NDSL에서 최근 5년 동안 발표된 논문들을 중심으로 자료를 수집하였다. 연구자들이 학술 정보를 교환하는 정기 간행물인 학술지를 바탕으로 연구 네트워크를 형성하는 네트워크 자료를 수집함으로써 연구활동에 대한 정보를 분석할 수 있었다. 일반적으로 연구자들은 연구 결과를 논문으로 발표하고, 발표된 논문들이 다수의 관련 분야 전문가들에게 공유된다는 점에서 학술연구지는 연구자들의 지식관련 의사소통 공간이며 지식의 구조화에 핵심적인 역할을 수행한다. 그에 따라 본 연구의 연구 대상 분야로 설정한 개인정보보호 분야의 연구 구조를 이해하기 위해 국내에서 발표된 관련 분야의 논문들을 연구 대상으로 자료가 수집되었다. 특히 자료의 선별 기준은 국내 최대의 데이터베이스를 보유하고 있는 NDSL에서 개인정보보호 관련 키워드를 보유한 논문 데이터를 수집 및 정제하여 분석 자료로 사용하였다. 2005년부터 2013년까지 약 2,000개의 연구결과 중 주제 관련성, 공저자 추출 등을 수집하였다. 데이터 수집 이후 연구 분석을 위한 데이터 처리를 통하여 통해 총 784개의 논문을 선정하고 분석대상으로 확정하였다. 분석 결과, 개인정보보호 연구영역의 전문가 집단을 이용한 연구논문 성과에 대한 분석은 핵심 연구자들을 추출해내고 전문가 집단을 관리하는 데 도움을 제공할 수 있다. 특히 소속집단 및 연구논문 발행기관을 분석함으로써 개인정보보호 연구영역에서 확인되지 않았던 연구자들의 연구 논문 게재의 공저자 네트워크가 매우 밀접함을 확인할 수 있다. 또한 연구논문의 발행기관 및 소속집단의 특성을 추출함으로써 개인정보보호 영역의 전문가 평가지표로서 소셜 네트워크 지표들의 활용가능성을 확인하였다.