Inhibition decorrelates visual feature representations in the inner retina

The retina extracts visual features for transmission to the brain. Different types of bipolar cell split the photoreceptor input into parallel channels and provide the excitatory drive for downstream visual circuits. Mouse bipolar cell types have been described at great anatomical and genetic detail, but a similarly deep understanding of their functional diversity is lacking. Here, by imaging light-driven glutamate release from more than 13,000 bipolar cell axon terminals in the intact retina, we show that bipolar cell functional diversity is generated by the interplay of dendritic excitatory inputs and axonal inhibitory inputs. The resulting centre and surround components of bipolar cell receptive fields interact to decorrelate bipolar cell output in the spatial and temporal domains. Our findings highlight the importance of inhibitory circuits in generating functionally diverse excitatory pathways and suggest that decorrelation of parallel visual pathways begins as early as the second synapse of the mouse visual system.

[1]  J. Dowling,et al.  Organization of the retina of the mudpuppy, Necturus maculosus. II. Intracellular recording. , 1969, Journal of neurophysiology.

[2]  R. Dacheux,et al.  The rod pathway in the rabbit retina: a depolarizing bipolar and amacrine cell , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[3]  Joseph J. Atick,et al.  Towards a Theory of Early Visual Processing , 1990, Neural Computation.

[4]  D. I. Vaney,et al.  Chapter 2 The mosaic of amacrine cells in the mammalian retina , 1990 .

[5]  F S Werblin,et al.  A novel GABA receptor modulates synaptic transmission from bipolar to ganglion and amacrine cells in the tiger salamander retina , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[6]  L. Peichl,et al.  Morphological types of horizontal cell in rodent retinae: A comparison of rat, mouse, gerbil, and guinea pig , 1994, Visual Neuroscience.

[7]  H. Wässle,et al.  Glutamate Responses of Bipolar Cells in a Slice Preparation of the Rat Retina , 1996, The Journal of Neuroscience.

[8]  M. Slaughter,et al.  Serial inhibitory synapses in retina , 1997, Visual Neuroscience.

[9]  P. Cook,et al.  Lateral inhibition in the inner retina is important for spatial tuning of ganglion cells , 1998, Nature Neuroscience.

[10]  H. Wässle,et al.  Different contributions of GABAA and GABAC receptors to rod and cone bipolar cells in a rat retinal slice preparation. , 1998, Journal of neurophysiology.

[11]  W R Taylor,et al.  TTX attenuates surround inhibition in rabbit retinal ganglion cells , 1999, Visual Neuroscience.

[12]  F S Werblin,et al.  Three Levels of Lateral Inhibition: A Space–Time Study of the Retina of the Tiger Salamander , 2000, The Journal of Neuroscience.

[13]  S. DeVries,et al.  Bipolar Cells Use Kainate and AMPA Receptors to Filter Visual Information into Separate Channels , 2000, Neuron.

[14]  J L Gallant,et al.  Sparse coding and decorrelation in primary visual cortex during natural vision. , 2000, Science.

[15]  G. Awatramani,et al.  Origin of Transient and Sustained Responses in Ganglion Cells of the Retina , 2000, The Journal of Neuroscience.

[16]  L. Lagnado,et al.  Synaptic Depression and the Kinetics of Exocytosis in Retinal Bipolar Cells , 2000, The Journal of Neuroscience.

[17]  Barry B. Lee,et al.  Center surround receptive field structure of cone bipolar cells in primate retina , 2000, Vision Research.

[18]  R H Masland,et al.  Light-evoked responses of bipolar cells in a mammalian retina. , 2000, Journal of neurophysiology.

[19]  S. Bloomfield,et al.  Rod Vision: Pathways and Processing in the Mammalian Retina , 2001, Progress in Retinal and Eye Research.

[20]  F. Werblin,et al.  Vertical interactions across ten parallel, stacked representations in the mammalian retina , 2001, Nature.

[21]  Robert E Marc,et al.  Molecular Phenotyping of Retinal Ganglion Cells , 2002, The Journal of Neuroscience.

[22]  M. Kalloniatis,et al.  Inner retinal neurons display differential responses to N‐methyl‐D‐aspartate receptor activation , 2003, The Journal of comparative neurology.

[23]  J. B. Demb,et al.  Different Circuits for ON and OFF Retinal Ganglion Cells Cause Different Contrast Sensitivities , 2003, The Journal of Neuroscience.

[24]  Nicholas Oesch,et al.  Direction-Selective Dendritic Action Potentials in Rabbit Retina , 2005, Neuron.

[25]  Tomomi Ichinose,et al.  Inner and outer retinal pathways both contribute to surround inhibition of salamander ganglion cells , 2005, The Journal of physiology.

[26]  Botond Roska,et al.  Parallel processing in retinal ganglion cells: how integration of space-time patterns of excitation and inhibition form the spiking output. , 2006, Journal of neurophysiology.

[27]  Erika D Eggers,et al.  GABAA, GABAC and glycine receptor‐mediated inhibition differentially affects light‐evoked signalling from mouse retinal rod bipolar cells , 2006, The Journal of physiology.

[28]  Wei Li,et al.  Parallel Processing in Two Transmitter Microenvironments at the Cone Photoreceptor Synapse , 2006, Neuron.

[29]  Thomas Euler,et al.  Two-Photon Imaging Reveals Somatodendritic Chloride Gradient in Retinal ON-Type Bipolar Cells Expressing the Biosensor Clomeleon , 2006, Neuron.

[30]  Heinz Wässle,et al.  Characterization of the glycinergic input to bipolar cells of the mouse retina , 2006, The European journal of neuroscience.

[31]  Robert F. Miller,et al.  Mechanism underlying rebound excitation in retinal ganglion cells , 2007, Visual Neuroscience.

[32]  Robert F. Miller,et al.  Normal and rebound impulse firing in retinal ganglion cells , 2007, Visual Neuroscience.

[33]  E. Hartveit,et al.  Patch-clamp investigations and compartmental modeling of rod bipolar axon terminals in an in vitro thin-slice preparation of the mammalian retina. , 2007, Journal of neurophysiology.

[34]  Tobias Breuninger,et al.  Eyecup scope—optical recordings of light stimulus-evoked fluorescence signals in the retina , 2009, Pflügers Archiv - European Journal of Physiology.

[35]  J. Lichtman,et al.  Development of presynaptic inhibition onto retinal bipolar cell axon terminals is subclass-specific. , 2008, Journal of neurophysiology.

[36]  J. Diamond,et al.  Diverse Mechanisms Underlie Glycinergic Feedback Transmission onto Rod Bipolar Cells in Rat Retina , 2008, The Journal of Neuroscience.

[37]  H. Wässle,et al.  Glycinergic Transmission in the Mammalian Retina , 2009, Frontiers in molecular neuroscience.

[38]  J. Diamond,et al.  BK channels modulate pre- and postsynaptic signaling at reciprocal synapses in retina , 2009, Nature Neuroscience.

[39]  H. Wässle,et al.  Glycinergic input of widefield, displaced amacrine cells of the mouse retina , 2009, The Journal of physiology.

[40]  Ji-Jie Pang,et al.  Direct rod input to cone BCs and direct cone input to rod BCs challenge the traditional view of mammalian BC circuitry , 2009, Proceedings of the National Academy of Sciences.

[41]  Kwoon Y. Wong,et al.  Ectopic retinal ON bipolar cell synapses in the OFF inner plexiform layer: Contacts with dopaminergic amacrine cells and melanopsin ganglion cells , 2009, The Journal of comparative neurology.

[42]  H. Wässle,et al.  Cone Contacts, Mosaics, and Territories of Bipolar Cells in the Mouse Retina , 2009, The Journal of Neuroscience.

[43]  L. Lagnado,et al.  Computational processing of optical measurements of neuronal and synaptic activity in networks , 2010, Journal of Neuroscience Methods.

[44]  Zhiyin Liang,et al.  The ON Pathway Rectifies the OFF Pathway of the Mammalian Retina , 2010, The Journal of Neuroscience.

[45]  B. Reese,et al.  Role of Afferents in the Differentiation of Bipolar Cells in the Mouse Retina , 2010, The Journal of Neuroscience.

[46]  Hermann Riecke,et al.  Mechanisms of pattern decorrelation by recurrent neuronal circuits , 2010, Nature Neuroscience.

[47]  Erika D Eggers,et al.  Interneuron circuits tune inhibition in retinal bipolar cells. , 2010, Journal of neurophysiology.

[48]  Jerzy Tiuryn,et al.  Introducing Knowledge into Differential Expression Analysis , 2010, J. Comput. Biol..

[49]  Erika D Eggers,et al.  Multiple pathways of inhibition shape bipolar cell responses in the retina , 2010, Visual Neuroscience.

[50]  Brent Doiron,et al.  Timescale-dependent shaping of correlation by olfactory bulb lateral inhibition , 2011, Proceedings of the National Academy of Sciences.

[51]  Tobias Breuninger,et al.  Chromatic Bipolar Cell Pathways in the Mouse Retina , 2011, The Journal of Neuroscience.

[52]  Nicholas W. Oesch,et al.  Ribbon synapses compute temporal contrast and encode luminance in retinal rod bipolar cells , 2011, Nature Neuroscience.

[53]  F. Esposti,et al.  In vivo evidence that retinal bipolar cells generate spikes modulated by light , 2011, Nature Neuroscience.

[54]  S. Massey,et al.  Axonal Synapses Utilize Multiple Synaptic Ribbons in the Mammalian Retina , 2012, PloS one.

[55]  H. B. Barlow,et al.  Possible Principles Underlying the Transformations of Sensory Messages , 2012 .

[56]  M. Meister,et al.  Divergence of visual channels in the inner retina , 2012, Nature Neuroscience.

[57]  Jonathan B Demb,et al.  Intrinsic properties and functional circuitry of the AII amacrine cell , 2012, Visual Neuroscience.

[58]  R. Masland The tasks of amacrine cells , 2012, Visual Neuroscience.

[59]  R. Masland The Neuronal Organization of the Retina , 2012, Neuron.

[60]  M. Meister,et al.  Decorrelation and efficient coding by retinal ganglion cells , 2012, Nature Neuroscience.

[61]  L. Lagnado,et al.  Encoding of Luminance and Contrast by Linear and Nonlinear Synapses in the Retina , 2012, Neuron.

[62]  Thomas Euler,et al.  A Tale of Two Retinal Domains: Near-Optimal Sampling of Achromatic Contrasts in Natural Scenes through Asymmetric Photoreceptor Distribution , 2013, Neuron.

[63]  Botond Roska,et al.  The First Stage of Cardinal Direction Selectivity Is Localized to the Dendrites of Retinal Ganglion Cells , 2013, Neuron.

[64]  J. Marvin,et al.  Two-Photon Imaging of Nonlinear Glutamate Release Dynamics at Bipolar Cell Synapses in the Mouse Retina , 2013, The Journal of Neuroscience.

[65]  Thomas Euler,et al.  Early Vision: Where (Some of) the Magic Happens , 2013, Current Biology.

[66]  Stefan R. Pulver,et al.  Ultra-sensitive fluorescent proteins for imaging neuronal activity , 2013, Nature.

[67]  M. Bethge,et al.  Spikes in Mammalian Bipolar Cells Support Temporal Layering of the Inner Retina , 2013, Current Biology.

[68]  W. Taylor,et al.  Inhibitory mechanisms that generate centre and surround properties in ON and OFF brisk‐sustained ganglion cells in the rabbit retina , 2013, The Journal of physiology.

[69]  Thomas Euler,et al.  OFF bipolar cells express distinct types of dendritic glutamate receptors in the mouse retina , 2013, Neuroscience.

[70]  L. Lagnado,et al.  Synaptic mechanisms of adaptation and sensitization in the retina , 2013, Nature Neuroscience.

[71]  Srinivas C. Turaga,et al.  Connectomic reconstruction of the inner plexiform layer in the mouse retina , 2013, Nature.

[72]  Mark T. Harnett,et al.  An optimized fluorescent probe for visualizing glutamate neurotransmission , 2013, Nature Methods.

[73]  Thomas Euler,et al.  Retinal bipolar cells: elementary building blocks of vision , 2014, Nature Reviews Neuroscience.

[74]  Srinivas C. Turaga,et al.  Space-time wiring specificity supports direction selectivity in the retina , 2014, Nature.

[75]  L. Looger,et al.  Receptive field properties of bipolar cell axon terminals in direction-selective sublaminas of the mouse retina. , 2014, Journal of neurophysiology.

[76]  Seunghoon Lee,et al.  An Unconventional Glutamatergic Circuit in the Retina Formed by vGluT3 Amacrine Cells , 2014, Neuron.

[77]  Thomas Euler,et al.  Differential Regulation of Cone Calcium Signals by Different Horizontal Cell Feedback Mechanisms in the Mouse Retina , 2014, The Journal of Neuroscience.

[78]  S. DeVries,et al.  Kainate receptor subunit diversity underlying response diversity in retinal Off bipolar cells , 2014, The Journal of physiology.

[79]  Hiroki Asari,et al.  The Projective Field of Retinal Bipolar Cells and Its Modulation by Visual Context , 2014, Neuron.

[80]  W. Taylor,et al.  Kainate Receptors Mediate Synaptic Input to Transient and Sustained OFF Visual Pathways in Primate Retina , 2014, The Journal of Neuroscience.

[81]  F. Esposti,et al.  A Synaptic Mechanism for Temporal Filtering of Visual Signals , 2014, PLoS biology.

[82]  Katja Reinhard,et al.  Retinal output changes qualitatively with every change in ambient illuminance , 2014, Nature Neuroscience.

[83]  Synaptic properties of vGluT3 amacrine cells in the mouse retina , 2015 .

[84]  J. Sanes,et al.  The types of retinal ganglion cells: current status and implications for neuronal classification. , 2015, Annual review of neuroscience.

[85]  P. Lukasiewicz,et al.  Differential encoding of spatial information among retinal on cone bipolar cells. , 2015, Journal of neurophysiology.

[86]  Alexander S. Ecker,et al.  DataJoint: managing big scientific data using MATLAB or Python , 2015, bioRxiv.

[87]  W. Taylor,et al.  Synaptic Mechanisms Generating Orientation Selectivity in the ON Pathway of the Rabbit Retina , 2016, The Journal of Neuroscience.

[88]  Matthias Bethge,et al.  The functional diversity of retinal ganglion cells in the mouse , 2015, Nature.

[89]  Thomas Euler,et al.  Retinal Physiology: Non-Bipolar-Cell Excitatory Drive in the Inner Retina , 2016, Current Biology.

[90]  F. Rieke,et al.  Glutamatergic Monopolar Interneurons Provide a Novel Pathway of Excitation in the Mouse Retina , 2016, Current Biology.

[91]  Evan Z. Macosko,et al.  Comprehensive Classification of Retinal Bipolar Neurons by Single-Cell Transcriptomics , 2016, Cell.

[92]  L. Lagnado,et al.  Crossover Inhibition Generates Sustained Visual Responses in the Inner Retina , 2016, Neuron.

[93]  H. Sebastian Seung,et al.  Analogous Convergence of Sustained and Transient Inputs in Parallel On and Off Pathways for Retinal Motion Computation , 2016, Cell reports.

[94]  Christian K. Machens,et al.  Efficient codes and balanced networks , 2016, Nature Neuroscience.

[95]  Philipp Berens,et al.  Connectivity map of bipolar cells and photoreceptors in the mouse retina , 2016, bioRxiv.