Investigation of opioid and cholecystokinin central receptors after peripheral injection of selective and enzyme-resistant peptides

[1]  B. Roques,et al.  Tritium labelling of highly selective probes for δ-opioid receptors: [3H] Tyr-D-Ser(O-t-Bu)-Gly-Phe-Leu-Thr(DSTBULET) and [3H]Tyr-D-Ser(O-t-Bu)-Gly-Phe-Leu-Thr(O-t-Bu)(BUBU) , 1990 .

[2]  B. Roques,et al.  Binding in vivo of selective μ and δ opioid receptor agonists: opioid receptor occupancy by endogenous enkephalins , 1989 .

[3]  P. Corringer,et al.  [3H]pBC 264, first highly potent and very selective radioligand for CCK-B receptors. , 1989, European journal of pharmacology.

[4]  B. Roques,et al.  Development of conformationally constrained linear peptides exhibiting a high affinity and pronounced selectivity for delta opioid receptors. , 1988, Journal of medicinal chemistry.

[5]  B. Roques,et al.  Enzyme-resistant CCK analogs with high affinities for central receptors , 1988, Peptides.

[6]  B. Roques,et al.  [3H][D-Ser2(O-tert-butyl),Leu5]enkephalyl-Thr6 and [D-Ser2(O-tert-butyl),Leu5]enkephalyl-Thr6(O-tert-butyl). Two new enkephalin analogs with both a good selectivity and a high affinity toward delta-opioid binding sites. , 1988, The Journal of biological chemistry.

[7]  H. Davson,et al.  Unidirectional uptake of enkephalins at the blood-tissue interface of the blood-cerebrospinal fluid barrier: a saturable mechanism , 1988, Regulatory Peptides.

[8]  W. Banks,et al.  Saturable transport of peptides across the blood-brain barrier. , 1987, Life sciences.

[9]  B. Långström,et al.  Kinetics of four 11C-labelled enkephalin peptides in the brain, pituitary and plasma of Rhesus monkeys , 1986, Regulatory Peptides.

[10]  G. Guilbaud,et al.  Differential depressive action of two μ and δ opioid ligands on neuronal responses to noxious stimuli in the thalamic ventrobasal complex of rat , 1986, Brain Research.

[11]  J. Besson,et al.  Opioid receptor types and antinociceptive activity in chronic inflammation: bothe κ- and μ-opiate agonistic effects are enhanced in arthritic rats , 1986 .

[12]  W. Banks,et al.  Central nervous system effects of peptides, 1980–1985: A cross-listing of peptides and their central actions from the first six years of the journal Peptides , 1986, Peptides.

[13]  B. Roques,et al.  Differential electrographic patterns for specific μ- and δ-opioid peptides in rats , 1986 .

[14]  B. Roques,et al.  Multiple cleavage sites of cholecystokinin heptapeptide by “enkephalinase” , 1985, Peptides.

[15]  B. Roques,et al.  The μ rather than the δ subtype of opioid receptors appears to be involved in enkephalin-induced analgesia , 1984 .

[16]  J. Champagnat,et al.  Different effects of and d opiate agonists on respiration , 1984 .

[17]  W. Pardridge Neuropeptides and the blood-brain barrier. , 1983, Annual review of physiology.

[18]  G. Pasternak,et al.  Metkephamid (Tyr-D-Ala-Gly-Phe-N(Me)Met-NH2), a potent opioid peptide: Receptor binding and analgesic properties , 1982, Peptides.

[19]  L. Moroder,et al.  Degradation of cholecystokinin octapeptide, related fragments and analogs by human and rat plasma in vitro , 1982, Regulatory Peptides.

[20]  J. Fabre,et al.  The measurement of circulating blood volume and of the blood volume impregnating organs in rat and rabbit, using 113mIn-labelled transferrin. , 1979, International journal of nuclear medicine and biology.

[21]  F. Cardinaux,et al.  A synthetic enkephalin analogue with prolonged parenteral and oral analgesic activity , 1977, Nature.

[22]  T. Haley,et al.  Pharmacological effects produced by intracerebral injection of drugs in the conscious mouse. , 1957, British journal of pharmacology and chemotherapy.

[23]  F. Wilcoxon,et al.  A simplified method of evaluating dose-effect experiments. , 1948, The Journal of pharmacology and experimental therapeutics.