A space–time parallel framework for fine-scale visualization of pollen levels across the Eastern United States

ABSTRACT Allergic rhinitis (hay fever) resulting from seasonal pollen affects 15–30% of the population in the United States, and can exacerbate several related conditions, including asthma, atopic eczema, and allergic conjunctivitis. Timely monitoring, accurate prediction, and visualization of pollen levels are critical for public health prevention purposes, such as limiting outdoor exposure or physical activity. The low density of pollen detecting stations and complex movement of pollen represent a challenge for accurate prediction and modeling. In this paper, we reconstruct the dynamics of pollen variation across the Eastern United States for 2016 using space–time interpolation. Pollen levels were extracted according to a stratified spatial sampling design, augmented by additional samples in densely populated areas. These measurements were then used to estimate the space–time cross-correlation, inferring optimal spatial and temporal ranges to calibrate the space–time interpolation. Given the computational requirements of the interpolation algorithm, we implement a spatiotemporal domain decomposition algorithm, and use parallel computing to reduce the computational burden. We visualize our results in a 3D environment to identify the seasonal dynamics of pollen levels. Our approach is also portable to analyze other large space–time explicit datasets, such as air pollution, ash clouds, and precipitation.

[1]  M. Tomczak,et al.  Spatial Interpolation and its Uncertainty Using Automated Anisotropic Inverse Distance Weighting (IDW) - Cross-Validation/Jackknife Approach , 1998 .

[2]  Harvey S. Smallman,et al.  The Use of 2D and 3D Displays for Shape-Understanding versus Relative-Position Tasks , 2001, Hum. Factors.

[3]  I. Hung,et al.  The mapping of composite pollen from point sampled data and cartographic generalization , 2012 .

[4]  Jian Wang,et al.  Explorations of the implementation of a parallel IDW interpolation algorithm in a Linux cluster-based parallel GIS , 2011, Comput. Geosci..

[5]  R. Settipane,et al.  Allergic rhinitis , 2005, Rhinology and Anterior Skull Base Surgery.

[6]  M. V. Kreveld Working Group V — Visualization — Position Paper: 3D Geo-Visualization , 2008 .

[7]  Heidrun Schumann,et al.  Space, time and visual analytics , 2010, Int. J. Geogr. Inf. Sci..

[8]  J. Nowosad Spatiotemporal models for predicting high pollen concentration level of Corylus, Alnus, and Betula , 2015, International Journal of Biometeorology.

[9]  Yongmei Lu,et al.  Constructing a Near Real‐time Space‐time Cube to Depict Urban Ambient Air Pollution Scenario , 2011, Trans. GIS.

[10]  Eric Delmelle,et al.  Mapping collective human activity in an urban environment based on mobile phone data , 2014 .

[11]  Hai Jin,et al.  An Introduction to the InfiniBand Architecture , 2002 .

[12]  Edith Gabriel,et al.  Estimating Second-Order Characteristics of Inhomogeneous Spatio-Temporal Point Processes , 2013, Methodology and Computing in Applied Probability.

[13]  Budiman Minasny,et al.  VESPER 1.5 - spatial prediction software for precision agriculture. , 2002 .

[14]  Marc Levoy,et al.  Display of surfaces from volume data , 1988, IEEE Computer Graphics and Applications.

[15]  T. C. Haas,et al.  Kriging and automated variogram modeling within a moving window , 1990 .

[16]  M. Kwan Gis methods in time‐geographic research: geocomputation and geovisualization of human activity patterns , 2004 .

[17]  Kirsi Virrantaus,et al.  Space–time density of trajectories: exploring spatio-temporal patterns in movement data , 2010, Int. J. Geogr. Inf. Sci..

[18]  D. Charpin,et al.  Épidémiologie de l’allergie pollinique , 2014 .

[19]  William Ribarsky,et al.  Space-Time Kernel Density Estimation for Real-Time Interactive Visual Analytics , 2017, HICSS.

[20]  Susanne Bleisch,et al.  3D GEOVISUALIZATION – DEFINITION AND STRUCTURES FOR THE ASSESSMENT OF USEFULNESS , 2012 .

[21]  H. Miller A MEASUREMENT THEORY FOR TIME GEOGRAPHY , 2005 .

[22]  M. Bell,et al.  Spatial and temporal modeling of daily pollen concentrations , 2011, International Journal of Biometeorology.

[23]  J. Andrew Royle,et al.  Space: Time Dynamic Design of Environmental Monitoring Networks , 1999 .

[24]  Heidrun Schumann,et al.  Visualization of Time-Oriented Data , 2011, Human-Computer Interaction Series.

[25]  Francky Fouedjio,et al.  Second-order non-stationary modeling approaches for univariate geostatistical data , 2017, Stochastic Environmental Research and Risk Assessment.

[26]  Hongda Hu,et al.  An improved coarse-grained parallel algorithm for computational acceleration of ordinary Kriging interpolation , 2015, Comput. Geosci..

[27]  Jean-Claude Thill,et al.  Enhanced 3D visualization techniques in support of indoor location planning , 2015, Comput. Environ. Urban Syst..

[28]  Edzer J. Pebesma,et al.  Please Scroll down for Article International Journal of Geographical Information Science Interactive Visualization of Uncertain Spatial and Spatio-temporal Data under Different Scenarios: an Air Quality Example Interactive Visualization of Uncertain Spatial and Spatio-temporal Data under Different S , 2022 .

[29]  Soo Cheng,et al.  Pollen counts in relation to the prevalence of allergic rhinoconjunctivitis, asthma and atopic eczema in the International Study of Asthma and Allergies in Childhood (ISAAC) , 2003, Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology.

[30]  Bing Zhang,et al.  Evaluation of Spatio-Temporal Variogram Models for Mapping Xco2 Using Satellite Observations: A Case Study in China , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[31]  Andrew J. Hanson,et al.  A 3D Visualization of Multiple Time Series on Maps , 2010, 2010 14th International Conference Information Visualisation.

[32]  Torsten Hägerstraand WHAT ABOUT PEOPLE IN REGIONAL SCIENCE , 1970 .

[33]  Cynthia A. Brewer,et al.  ColorBrewer in Print: A Catalog of Color Schemes for Maps , 2003 .

[34]  Travis Losser,et al.  Fast Inverse Distance Weighting-Based Spatiotemporal Interpolation: A Web-Based Application of Interpolating Daily Fine Particulate Matter PM2.5 in the Contiguous U.S. Using Parallel Programming and k-d Tree , 2014, International journal of environmental research and public health.

[35]  C. Galán,et al.  The reliability of geostatistic interpolation in olive field floral phenology , 2006 .

[36]  I. Hung Geospatial Analysis of Southern Pine Biome and Pollen Distribution Patterns in Southeastern , 2006 .

[37]  Ikuho Yamada,et al.  An Empirical Comparison of Edge Effect Correction Methods Applied to K -function Analysis , 2003 .

[38]  S K Thompson,et al.  Spatial sampling. , 1997, Ciba Foundation symposium.

[39]  I. Annesi-Maesano,et al.  Climate change and respiratory diseases , 2014, European Respiratory Review.

[40]  E. Delmelle,et al.  Space-Time Visualization of Dengue Fever Outbreaks , 2016 .

[41]  Annette Menzel,et al.  The influence of altitude and urbanisation on trends and mean dates in phenology (1980–2009) , 2012, International Journal of Biometeorology.

[42]  Yuemin Ding,et al.  Spatial Strategies for Parallel Spatial Modelling , 1996, Int. J. Geogr. Inf. Sci..

[43]  C. Galán,et al.  The Use of Geostatistics in the Study of Floral Phenology of Vulpia geniculata (L.) Link , 2012, TheScientificWorldJournal.

[44]  Ifan D. H. Shepherd Travails in the third dimension: a critical evaluation of three-dimensional geographical visualization , 2008 .

[45]  C. Galán,et al.  Airborne-pollen maps for olive-growing areas throughout the Mediterranean region: spatio-temporal interpretation , 2015, Aerobiologia.

[46]  Robert F Burkard,et al.  The Human Auditory Brain-stem Response to High Click Rates: Aging Effects. , 2001, American journal of audiology.

[47]  M. Sherman Spatial Statistics and Spatio-Temporal Data: Covariance Functions and Directional Properties , 2010 .

[48]  A. Pauling,et al.  The Onset, Course and Intensity of the Pollen Season , 2013 .

[49]  Tomoki Nakaya,et al.  Visualising Crime Clusters in a Space‐time Cube: An Exploratory Data‐analysis Approach Using Space‐time Kernel Density Estimation and Scan Statistics , 2010, Trans. GIS.

[50]  P. Haase Spatial pattern analysis in ecology based on Ripley's K-function: Introduction and methods of edge correction , 1995 .

[51]  R. Pérez-Badia,et al.  Spatiotemporal analysis of olive flowering using geostatistical techniques. , 2015, The Science of the total environment.

[52]  E. Levetin,et al.  Pollen count forecasting. , 2003, Immunology and allergy clinics of North America.

[53]  Odysseas I. Pentakalos An Introduction to the InfiniBand Architecture , 2002, Int. CMG Conference.

[54]  Alkis Togias,et al.  Clinical practice. Allergic rhinitis. , 2015, The New England journal of medicine.

[55]  Michael Allen,et al.  Parallel programming: techniques and applications using networked workstations and parallel computers , 1998 .

[56]  Eric M. Delmelle,et al.  Visualizing the impact of space-time uncertainties on dengue fever patterns , 2014, Int. J. Geogr. Inf. Sci..

[57]  A. Gelfand,et al.  High-Resolution Space–Time Ozone Modeling for Assessing Trends , 2007, Journal of the American Statistical Association.

[58]  Stanislav Kolenikov,et al.  Spatiotemporal modeling of PM2.5 data with missing values , 2003 .

[59]  Wenwu Tang,et al.  SPATIOTEMPORAL DOMAIN DECOMPOSITION FOR MASSIVE PARALLEL COMPUTATION OF SPACE-TIME KERNEL DENSITY , 2015 .

[60]  Forecasting model of Corylus, Alnus, and Betula pollen concentration levels using spatiotemporal correlation properties of pollen count , 2015, Aerobiologia.

[61]  G. Shaddick,et al.  Modelling daily multivariate pollutant data at multiple sites , 2002 .

[62]  Torsten Hägerstrand,et al.  What about people in Regional Science? , 1970 .

[63]  B. Ripley Modelling Spatial Patterns , 1977 .

[64]  Phaedon C. Kyriakidis,et al.  Geostatistical Space–Time Models: A Review , 1999 .

[65]  Wenwu Tang,et al.  Accelerating the discovery of space-time patterns of infectious diseases using parallel computing. , 2016, Spatial and spatio-temporal epidemiology.

[66]  D. Nieto-Lugilde,et al.  Airborne-pollen map for Olea europaea L. in eastern Andalusia (Spain) using GIS: Estimation models , 2006 .

[67]  Wenwu Tang,et al.  Hybrid Indexing for Parallel Analysis of Spatiotemporal Point Patterns , 2016 .

[68]  Sujit K. Sahu,et al.  Hierarchical Bayesian models for space-time air pollution data , 2012 .