Possibilistic logic : a retrospective and prospective view

Possibilistic logic is a weighted logic introduced and developed since the mid-1980s, in the setting of artificial intelligence, with a view to develop a simple and rigorous approach to automated reasoning from uncertain or prioritized incomplete information. Standard possibilistic logic expressions are classical logic formulas associated with weights, interpreted in the framework of possibility theory as lower bounds of necessity degrees. Possibilistic logic handles partial inconsistency since an inconsistency level can be computed for each possibilistic logic base. Logical formulas with a weight strictly greater than this level are immune to inconsistency and can be safely used in deductive reasoning. This paper first recalls the basic features of possibilistic logic, including information fusion operations. Then, several extensions that mainly deal with the nature and the handling of the weights attached to formulas, are suggested or surveyed: the leximin-based comparison of proofs, the use of partially ordered scales for the weights, or the management of fuzzily restricted variables. Inference principles that are more powerful than the basic possibilistic inference in case of inconsistency are also briefly considered. The interest of a companion logic, based on the notion of guaranteed possibility functions, and working in a way opposite to the one of usual logic, is also emphasized. Its joint use with standard possibilistic logic is briefly discussed. This position paper stresses the main ideas only and refers to previous published literature for technical details.

[1]  K. J. Evans Representing and Reasoning with Probabilistic Knowledge , 1993 .

[2]  Luca Boldrin,et al.  Truth Functionality and Measure-Based Logics , 1999 .

[3]  Odile Papini,et al.  Reasoning with partially ordered information in a possibilistic logic framework , 2004, Fuzzy Sets Syst..

[4]  Didier Dubois,et al.  Conditional objects, possibility theory and default rules , 1996 .

[5]  Joseph Y. Halpern,et al.  A Logic for Reasoning about Upper Probabilities , 2001, UAI.

[6]  Teresa Alsinet,et al.  A Complete Calcultis for Possibilistic Logic Programming with Fuzzy Propositional Variables , 2000, UAI.

[7]  Didier Dubois,et al.  Inconsistency Management and Prioritized Syntax-Based Entailment , 1993, IJCAI.

[8]  Petr Hájek,et al.  Metamathematics of Fuzzy Logic , 1998, Trends in Logic.

[9]  Didier Dubois,et al.  Handling Uncertainty, Context, Vague Predicates, and Partial Inconsistency in Possibilistic Logic , 1991, Fuzzy Logic and Fuzzy Control.

[10]  Gerhard Brewka,et al.  Preferred Subtheories: An Extended Logical Framework for Default Reasoning , 1989, IJCAI.

[11]  Didier Dubois,et al.  Using Possibilistic Logic for Modeling Qualitative Decision: ATMS-based Algorithms , 1999, Fundam. Informaticae.

[12]  Didier Dubois,et al.  Representing Default Rules in Possibilistic Logic , 1992, KR.

[13]  Teresa Alsinet,et al.  Two formalisms of extended possibilistic logic programming with context-dependent fuzzy unification: a comparative description , 2002, UNCL@ICALP.

[14]  Didier Dubois,et al.  Bipolar Representation and Fusion of Preferences on the Possibilistic Logic framework , 2002, KR.

[15]  Raymond Y. K. Lau,et al.  Possibilistic Reasoning for Intelligent Payment Agents , 2000, PRICAI Workshops.

[16]  Didier Dubois,et al.  Inconsistency in possibilistic knowledge bases: to live with it or not live with it , 1992 .

[17]  Didier Dubois,et al.  A Possibilistic Assumption-Based Truth Maintenance System with Uncertain Justifications, and its Application to Belief Revision , 1990, Truth Maintenance Systems.

[18]  Francesco Fulvio Monai,et al.  Possibilistic Assumption based Truth Maintenance System, Validation in a Data Fusion Application , 1992, UAI.

[19]  Didier Dubois,et al.  Possibility Theory: Qualitative and Quantitative Aspects , 1998 .

[20]  Didier Dubois,et al.  Valid or Complete Information in Databases - A Possibility Theory-Based Analysis , 1997, DEXA.

[21]  Didier Dubois,et al.  Practical Handling of Exception-Tainted Rules and Independence Information in Possibilistic Logic , 1998, Applied Intelligence.

[22]  Andreas Herzig,et al.  Conditionals: from philosophy to computer science , 1996 .

[23]  Didier Dubois,et al.  Towards a Possibilistic Logic Handling of Preferences , 1999, Applied Intelligence.

[24]  Petr Hájek,et al.  A qualitative fuzzy possibilistic logic , 1995, Int. J. Approx. Reason..

[25]  Donald Nute,et al.  Counterfactuals , 1975, Notre Dame J. Formal Log..

[26]  Didier Dubois,et al.  Decision, nonmonotonic reasoning and possibilistic logic , 2000 .

[27]  Jérôme Lang Logique possibiliste : aspects formels, deduction automatique, et applications , 1991 .

[28]  Luca Boldrin,et al.  A Substructural Connective for Possibilistic Logic , 1995, ECSQARU.

[29]  Jürg Kohlas,et al.  Handbook of Defeasible Reasoning and Uncertainty Management Systems , 2000 .

[30]  Peter Gärdenfors,et al.  Knowledge in Flux , 1988 .

[31]  Didier Dubois,et al.  A Logic of Graded Possibility and Certainty Coping with Partial Inconsistency , 1994, UAI.

[32]  Sébastien Konieczny,et al.  Distance Based Merging: A General Framework and some Complexity Results , 2002, KR.

[33]  Luis Fariñas del Cerro,et al.  A Modal Analysis of Possibility Theory , 1991, ECSQARU.

[34]  Daniel Lehmann,et al.  What does a Conditional Knowledge Base Entail? , 1989, Artif. Intell..

[35]  L. A. Zadeh,et al.  Fuzzy logic and approximate reasoning , 1975, Synthese.

[36]  Didier Dubois,et al.  Bridging Logical, Comparative, and Graphical Possibilistic Representation Frameworks , 2001, ECSQARU.

[37]  J. Loewenthal DECISION , 1969, Definitions.

[38]  J. Lang Possibilistic Logic: Complexity and Algorithms , 2000 .

[39]  Didier Dubois,et al.  A synthetic view of belief revision with uncertain inputs in the framework of possibility theory , 1997, Int. J. Approx. Reason..

[40]  Rudolf Kruse,et al.  Background and Perspectives of Possibilistic Graphical Models , 1997, ECSQARU-FAPR.

[41]  Petr Hájek,et al.  On Modal Logics for Qualitative Possibility in a Fuzzy Setting , 1994, UAI.

[42]  Didier Dubois,et al.  Encoding Information Fusion in Possibilistic Logic: A General Framework for Rational Syntactic Merging , 2000, ECAI.

[43]  Petr Hájek,et al.  Fuzzy logic and probability , 1995, UAI.

[44]  Didier Dubois,et al.  Dealing with Multi-Source Information in Possibilistic Logic , 1992, ECAI.

[45]  Luis Fariñas del Cerro,et al.  A modal analysis of possibility theory , 1991, FAIR.

[46]  Ulises Cortés,et al.  A parallel algorithm for building possibilistic causal networks , 1998, Int. J. Approx. Reason..

[47]  Luis Fariñas del Cerro,et al.  From Ordering-Based Nonmonotonic Reasoning to Conditional Logics , 1992, Artif. Intell..

[48]  Alessandro Saffiotti,et al.  A General Approach for Inconsistency Handling and Merging Information in Prioritized Knowledge Bases , 1998, KR.

[49]  Sébastien Konieczny,et al.  On the Logic of Merging , 1998, KR.

[50]  Jack Minker,et al.  Logic-Based Artificial Intelligence , 2000 .

[51]  Arthur H. M. ter Hofstede,et al.  Maxi-Adjustment and Possibilistic Deduction for Adaptive Information Agents , 2001, J. Appl. Non Class. Logics.

[52]  Giangiacomo Gerla,et al.  Generated necessities and possibilities , 1992, Int. J. Intell. Syst..

[53]  Didier Dubois,et al.  Kalman-like filtering and updating in a possibilistic setting , 2000 .

[54]  Churn-Jung Liau,et al.  Possibilistic Residuated Implication Logics with Applications , 1998, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[55]  Didier Dubois,et al.  "Not Impossible" vs. "Guaranteed Possible" in Fusion and Revision , 2001, ECSQARU.

[56]  Thomas Lukasiewicz,et al.  Local probabilistic deduction from taxonomic and probabilistic knowledge-bases over conjunctive events , 1999, Int. J. Approx. Reason..

[57]  Luca Boldrin,et al.  Local Possibilistic Logic , 1997, J. Appl. Non Class. Logics.

[58]  Didier Dubois,et al.  Graphical readings of possibilistic logic bases , 2001, UAI.

[59]  Joseph Y. Halpern An Analysis of First-Order Logics of Probability , 1989, IJCAI.

[60]  Manfred Jaeger,et al.  Automatic derivation of probabilistic inference rules , 2001, Int. J. Approx. Reason..

[61]  Didier Dubois,et al.  COMBINING HYPOTHETICAL REASONING and PLAUSIBLE INFERENCE IN POSSIBILISTIC LOGIC , 1996 .

[62]  Thomas Schiex,et al.  Semiring-Based CSPs and Valued CSPs: Frameworks, Properties, and Comparison , 1999, Constraints.

[63]  Luis M. de Campos,et al.  Independence concepts in possibility theory: Part I , 1999, Fuzzy Sets Syst..

[64]  Didier Dubois,et al.  Towards Possibilistic Logic Programming , 1991, ICLP.

[65]  Stephan Lehmke,et al.  Logics which allow Degrees of Truth and Degrees of Validity: a way of handling graded truth assessment and graded trust assessment within a single framework , 2005 .

[66]  D Dubois,et al.  Belief structures, possibility theory and decomposable confidence measures on finite sets , 1986 .

[67]  Stephan Lehmke,et al.  Degrees of truth and degrees of validity , 2000 .

[68]  Thomas Schiex,et al.  Semiring-Based CSPs and Valued CSPs: Basic Properties and Comparison , 1995, Over-Constrained Systems.

[69]  Craig Boutilier,et al.  Modal logics for qualitative possibility theory , 1994, Int. J. Approx. Reason..

[70]  Didier Dubois,et al.  Timed possibilistic logic , 1991, Fundam. Informaticae.

[71]  L. Zadeh,et al.  Fuzzy Logic for the Management of Uncertainty , 1992 .

[72]  Dov M. Gabbay,et al.  Handbook of defeasible reasoning and uncertainty management systems: volume 2: reasoning with actual and potential contradictions , 1998 .

[73]  J. H. Jahnke,et al.  Design recovery of legacy database applications based on possibilistic reasoning , 1998, 1998 IEEE International Conference on Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36228).

[74]  Didier Dubois,et al.  Automated Reasoning Using Possibilistic Logic: Semantics, Belief Revision, and Variable Certainty Weights , 1994, IEEE Trans. Knowl. Data Eng..

[75]  Luca Boldrin,et al.  An Algebraic Semantics for Possibilistic Logic , 1995, UAI.

[76]  E. Hisdal Conditional possibilities independence and noninteraction , 1978 .

[77]  Pere Garcia-Calvés,et al.  Relating and extending semantical approaches to possibilistic reasoning , 1994, Int. J. Approx. Reason..

[78]  Didier Dubois,et al.  Knowledge-Driven versus Data-Driven Logics , 2000, J. Log. Lang. Inf..

[79]  Didier Dubois,et al.  Necessity Measures and the Resolution Principle , 1987, IEEE Transactions on Systems, Man, and Cybernetics.

[80]  Angelo Gilio,et al.  Probabilistic Reasoning Under Coherence in System P , 2002, Annals of Mathematics and Artificial Intelligence.

[81]  Didier Dubois,et al.  From Semantic to Syntactic Approaches to Information Combination in Possibilistic Logic , 1998 .

[82]  Philippe Besnard,et al.  Possibility and Necessity Functions over Non-Classical Logics , 1994, UAI.

[83]  Bernhard Hollunder An alternative proof method for possibilistic logic and its application to terminological logics , 1994, Int. J. Approx. Reason..

[84]  R. Scozzafava,et al.  Probabilistic Logic in a Coherent Setting , 2002 .

[85]  Teresa Alsinet,et al.  On the Semantics and Automated Deduction for PLFC, a Logic of Possibilistic Uncertainty and Fuzziness , 1999, UAI.

[86]  Nicholas Rescher,et al.  Plausible reasoning , 1976 .

[87]  N. Rescher,et al.  On inference from inconsistent premisses , 1970 .

[88]  Churn-Jung Liau,et al.  On the possibility theory-based semantics for logics of preference , 1999, Int. J. Approx. Reason..

[89]  J. Lang,et al.  A logic of supporters , 2000 .

[90]  Patrick Brézillon,et al.  Lecture Notes in Artificial Intelligence , 1999 .

[91]  Richard C. T. Lee Fuzzy Logic and the Resolution Principle , 1971, JACM.

[92]  Didier Dubois,et al.  Fuzzy Sets, Logics, and Reasoning About Knowledge , 1999 .

[93]  V. Novák,et al.  Discovering the world with fuzzy logic , 2000 .

[94]  Didier Dubois,et al.  Nonmonotonic Reasoning, Conditional Objects and Possibility Theory , 1997, Artif. Intell..

[95]  T. P. Martin,et al.  Logic Programming and Soft Computing , 1998 .

[96]  L. Zadeh Fuzzy sets as a basis for a theory of possibility , 1999 .

[97]  J. Kacprzyk,et al.  Aggregation and Fusion of Imperfect Information , 2001 .

[98]  D. Dubois,et al.  Possibility theory as a basis for preference propagation in automated reasoning , 1992, [1992 Proceedings] IEEE International Conference on Fuzzy Systems.

[99]  PradeHenri,et al.  Possibility Theory, Probability Theory and Multiple-Valued Logics , 2001 .

[100]  Andrew Walenstein,et al.  Evaluating Theories for Managing Imperfect Knowledge in Human-Centric Database Reengineering Environments , 2002, Int. J. Softw. Eng. Knowl. Eng..

[101]  Thomas Schiex,et al.  Possibilistic Constraint Satisfaction Problems or "How to Handle Soft Constraints?" , 1992, UAI.

[102]  E. Trillas,et al.  in Fuzzy Logic , 2002 .

[103]  Henri Prade,et al.  A Practical Approach to Revising Prioritized Knowledge Bases , 2002, Stud Logica.

[104]  H. Prade,et al.  Possibilistic logic , 1994 .

[105]  Didier Dubois,et al.  Resolution principles in possibilistic logic , 1990, Int. J. Approx. Reason..

[106]  Didier Dubois,et al.  An Overview of Inconsistency-Tolerant Inferences in Prioritized Knowledge Bases , 1999 .

[107]  Didier Dubois,et al.  Possibility Theory, Probability Theory and Multiple-Valued Logics: A Clarification , 2001, Annals of Mathematics and Artificial Intelligence.

[108]  Didier Dubois,et al.  Some Syntactic Approaches to the Handling of Inconsistent Knowledge Bases: A Comparative Study Part 1: The Flat Case , 1997, Stud Logica.

[109]  Didier Dubois,et al.  Epistemic Entrenchment and Possibilistic Logic , 1991, Artif. Intell..

[110]  D. Lewis Probabilities of Conditionals and Conditional Probabilities , 1976 .

[111]  Dov M. Gabbay,et al.  Handbook of logic in artificial intelligence and logic programming (vol. 1) , 1993 .

[112]  Dov M. Gabbay,et al.  Chapter 13 – Labelled Deductive Systems , 2003 .

[113]  W. Salmon,et al.  Knowledge in Flux , 1991 .

[114]  Jérôme Lang,et al.  Possibilistic logic as a logical framework for min-max discrete optimisation problems and prioritized constraints , 1991, FAIR.

[115]  Didier Dubois,et al.  On the transformation between possibilistic logic bases and possibilistic causal networks , 2002, Int. J. Approx. Reason..

[116]  Nicholas Rescher,et al.  On Inferences from Inconsistent Premises , 1970 .

[117]  Churn-Jung Liau,et al.  Possibilistic Reasoning - A Mini-Survey and Uniform Semantics , 1996, Artif. Intell..

[118]  Thomas Dyhre Nielsen,et al.  Symbolic and Quantitative Approaches to Reasoning with Uncertainty , 2003, Lecture Notes in Computer Science.

[119]  Didier Dubois,et al.  Theorem Proving Under Uncertainty - A Possibility Theory-based Approach , 1987, IJCAI.