Broadband high-efficiency dielectric metasurfaces for the visible spectrum

Significance Metasurfaces are optical elements that can mimic and expand on the functionality of refractive optics with a comparatively thin and planar profile. Transmissive metasurfaces suffer from high optical loss at visible wavelengths because of currently used materials and fabrication techniques. This work introduces metasurfaces that operate across the visible spectrum with high efficiencies. As the basis of our metasurfaces, we used a common material, titanium dioxide, and a fabrication method based an atomic layer deposition that creates highly anisotropic nanostructures. The results presented here provide an important advance for realizing optical components at visible wavelengths—e.g., lenses, holograms, and phase shifters—with orders of magnitude reduction in thickness compared with traditional refractive optics. Metasurfaces are planar optical elements that hold promise for overcoming the limitations of refractive and conventional diffractive optics. Original dielectric metasurfaces are limited to transparency windows at infrared wavelengths because of significant optical absorption and loss at visible wavelengths. Thus, it is critical that new materials and nanofabrication techniques be developed to extend dielectric metasurfaces across the visible spectrum and to enable applications such as high numerical aperture lenses, color holograms, and wearable optics. Here, we demonstrate high performance dielectric metasurfaces in the form of holograms for red, green, and blue wavelengths with record absolute efficiency (>78%). We use atomic layer deposition of amorphous titanium dioxide with surface roughness less than 1 nm and negligible optical loss. We use a process for fabricating dielectric metasurfaces that allows us to produce anisotropic, subwavelength-spaced dielectric nanostructures with shape birefringence. This process is capable of realizing any high-efficiency metasurface optical element, e.g., metalenses and axicons.

[1]  S. Pancharatnam,et al.  Generalized theory of interference, and its applications , 1956 .

[2]  R. Gerchberg A practical algorithm for the determination of phase from image and diffraction plane pictures , 1972 .

[3]  M. Berry Quantal phase factors accompanying adiabatic changes , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[4]  G. Jellison,et al.  Parameterization of the optical functions of amorphous materials in the interband region , 1996 .

[5]  Rajendra Bhandari,et al.  Polarization of light and topological phases , 1997 .

[6]  J. Aarik,et al.  Effect of crystal structure on optical properties of TiO2 films grown by atomic layer deposition , 1997 .

[7]  Philippe Lalanne,et al.  Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff , 1999 .

[8]  E Hasman,et al.  Pancharatnam--Berry phase in space-variant polarization-state manipulations with subwavelength gratings. , 2001, Optics letters.

[9]  Rolf Apetz,et al.  Transparent Alumina: A Light‐Scattering Model , 2003 .

[10]  Erez Hasman,et al.  Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics , 2003 .

[11]  Carl P. Tripp,et al.  Template‐Assisted Fabrication of Dense, Aligned Arrays of Titania Nanotubes with Well‐Controlled Dimensions on Substrates , 2004 .

[12]  Elton Graugnard,et al.  TiO2 Inverse Opals Fabricated Using Low‐Temperature Atomic Layer Deposition , 2005 .

[13]  G. Marin,et al.  Photocatalytic activity of dc magnetron sputter deposited amorphous TiO2 thin films , 2007 .

[14]  C. Detavernier,et al.  Atomic layer deposition of TiO2 from tetrakis-dimethyl-amido titanium or Ti isopropoxide precursors and H2O , 2007 .

[15]  S. George Atomic layer deposition: an overview. , 2010, Chemical reviews.

[16]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[17]  Shulin Sun,et al.  Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. , 2012, Nature materials.

[18]  Chih-Ming Wang,et al.  High-efficiency broadband anomalous reflection by gradient meta-surfaces. , 2012, Nano letters.

[19]  P. Sarro,et al.  Characterization of low temperature deposited atomic layer deposition TiO2 for MEMS applications , 2013 .

[20]  Vladimir M. Shalaev,et al.  Metasurface holograms for visible light , 2013, Nature Communications.

[21]  S. Pancharatnam Generalized theory of interference, and its applications , 2013 .

[22]  A. Kildishev,et al.  Planar Photonics with Metasurfaces , 2013, Science.

[23]  J. Valentine,et al.  Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. , 2014, Nano letters.

[24]  Bernard Kress,et al.  The segmentation of the HMD market: optics for smart glasses, smart eyewear, AR and VR headsets , 2014, Optics & Photonics - Optical Engineering + Applications.

[25]  Erez Hasman,et al.  Dielectric gradient metasurface optical elements , 2014, Science.

[26]  N. Yu,et al.  Flat optics with designer metasurfaces. , 2014, Nature materials.

[27]  Ai Qun Liu,et al.  High-efficiency broadband meta-hologram with polarization-controlled dual images. , 2014, Nano letters.

[28]  P. Genevet,et al.  Multiwavelength achromatic metasurfaces by dispersive phase compensation , 2014, Science.

[29]  Guoxing Zheng,et al.  Helicity multiplexed broadband metasurface holograms , 2015, Nature Communications.

[30]  Lei Zhou,et al.  Photonic Spin Hall Effect with Nearly 100% Efficiency , 2015 .

[31]  Guoxing Zheng,et al.  Metasurface holograms reaching 80% efficiency. , 2015, Nature nanotechnology.

[32]  Federico Capasso,et al.  Achromatic Metasurface Lens at Telecommunication Wavelengths. , 2015, Nano letters.

[33]  Janos Perczel,et al.  Visible-frequency hyperbolic metasurface , 2015, Nature.

[34]  A. Arbabi,et al.  Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. , 2014, Nature nanotechnology.

[35]  W. Withayachumnankul,et al.  Mechanically Tunable Dielectric Resonator Metasurfaces at Visible Frequencies. , 2016, ACS nano.

[36]  Arka Majumdar,et al.  Low contrast dielectric metasurface optics , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).