Correlation-based self-correcting tracking

We present a framework for improving probabilistic tracking of an extended object with a set of model points. The framework combines the tracker with an on-line performance measure and a correction technique. We correlate model point trajectories to improve on-line the accuracy of a failed or an uncertain tracker. A model point tracker gets assistance from neighboring trackers whenever a degradation in its performance is detected using the on-line performance measure. The correction of the model point state is based on correlation information from the state of other trackers. Partial Least Square (PLS) regression is used to model the correlation of point tracker states from short windowed trajectories adaptively. Experimental results on data obtained from optical motion capture systems show the improvement in tracking performance of the proposed framework compared to the baseline tracker and other state-of-the-art trackers.

[1]  Xinghua Sun,et al.  Action recognition via local descriptors and holistic features , 2009, 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[2]  Zdenek Kalal,et al.  Tracking-Learning-Detection , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Alex Pentland,et al.  Recursive Estimation of Motion, Structure, and Focal Length , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Dorin Comaniciu,et al.  Kernel-Based Object Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Tobias Bjerregaard,et al.  A survey of research and practices of Network-on-chip , 2006, CSUR.

[6]  Gerd Wanielik,et al.  Performance evaluation of Multiple Target Tracking in the absence of reference data , 2010, 2010 13th International Conference on Information Fusion.

[7]  Rama Chellappa,et al.  Visual tracking and recognition using appearance-adaptive models in particle filters , 2004, IEEE Transactions on Image Processing.

[8]  Dimitris N. Metaxas,et al.  Boosting and Nonparametric Based Tracking of Tagged MRI Cardiac Boundaries , 2006, MICCAI.

[9]  Niels da Vitoria Lobo,et al.  Self correcting tracking for articulated objects , 2006, 7th International Conference on Automatic Face and Gesture Recognition (FGR06).

[10]  Namrata Vaswani,et al.  Additive Change Detection in Nonlinear Systems With Unknown Change Parameters , 2007, IEEE Transactions on Signal Processing.

[11]  Thiagalingam Kirubarajan,et al.  Estimation with Applications to Tracking and Navigation , 2001 .

[12]  Gang Hua,et al.  Context-Aware Visual Tracking , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  ShaoLing,et al.  Recent advances and trends in visual tracking , 2011 .

[14]  Mario Sznaier,et al.  The Way They Move: Tracking Multiple Targets with Similar Appearance , 2013, 2013 IEEE International Conference on Computer Vision.

[15]  David J. Fleet,et al.  Robust Online Appearance Models for Visual Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Hongtao Lu,et al.  SURF Tracking , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[17]  J. Chéry,et al.  Real time and adaptive Kalman filter for joint nanometric displacement estimation, parameters tracking and drift correction of EFFPI sensor systems , 2011, 2011 IEEE SENSORS Proceedings.

[18]  Ba-Ngu Vo,et al.  A Consistent Metric for Performance Evaluation of Multi-Object Filters , 2008, IEEE Transactions on Signal Processing.

[19]  Maryam Sabbaghian,et al.  Automated face tracking with self correction capability , 2011, 2011 International Conference of Soft Computing and Pattern Recognition (SoCPaR).

[20]  Zhiwei Zhu,et al.  Eye gaze tracking under natural head movements , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[21]  Carlo S. Regazzoni,et al.  A general Bayesian algorithm for visual object tracking based on sparse features , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[22]  Michael J. Black,et al.  HumanEva: Synchronized Video and Motion Capture Dataset for Evaluation of Articulated Human Motion , 2006 .

[23]  Ling Shao,et al.  Recent advances and trends in visual tracking: A review , 2011, Neurocomputing.

[24]  Carlo S. Regazzoni,et al.  Online failure detection and correction for Bayesian sparse feature-based object tracking , 2011, 2011 8th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS).

[25]  Andrea Cavallaro,et al.  Adaptive Online Performance Evaluation of Video Trackers , 2012, IEEE Transactions on Image Processing.

[26]  Roman Rosipal,et al.  Overview and Recent Advances in Partial Least Squares , 2005, SLSFS.

[27]  Hyung Jin Chang,et al.  Tracking failure detection by imitating human visual perception , 2011, 2011 18th IEEE International Conference on Image Processing.

[28]  Hong Qiao,et al.  Online Appearance Model Learning and Generation for Adaptive Visual Tracking , 2011, IEEE Transactions on Circuits and Systems for Video Technology.

[29]  Rama Chellappa,et al.  Online Empirical Evaluation of Tracking Algorithms , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  Qiong Wu,et al.  Real-Time Estimation of Missing Markers for Reconstruction of Human Motion , 2011, 2011 XIII Symposium on Virtual Reality.

[31]  Hai Tao,et al.  Probabilistic Object Tracking With Dynamic Attributed Relational Feature Graph , 2008, IEEE Transactions on Circuits and Systems for Video Technology.

[32]  Gutemberg Guerra-Filho,et al.  Optical Motion Capture: Theory and Implementation , 2005, RITA.

[33]  Baoxin Li,et al.  Exploiting Motion Correlations in 3-D Articulated Human Motion Tracking , 2009, IEEE Transactions on Image Processing.

[34]  Massimo Piccardi,et al.  An online HDP-HMM for joint action segmentation and classification in motion capture data , 2012, 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[35]  Cordelia Schmid,et al.  A performance evaluation of local descriptors , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[36]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[37]  Bohyung Han,et al.  Learning occlusion with likelihoods for visual tracking , 2011, 2011 International Conference on Computer Vision.

[38]  Jiri Matas,et al.  Forward-Backward Error: Automatic Detection of Tracking Failures , 2010, 2010 20th International Conference on Pattern Recognition.

[39]  Rogério Schmidt Feris,et al.  Video Analytics in Urban Environments , 2009, 2009 Sixth IEEE International Conference on Advanced Video and Signal Based Surveillance.

[40]  Francois Bremond,et al.  Online tracking parameter adaptation based on evaluation , 2013, 2013 10th IEEE International Conference on Advanced Video and Signal Based Surveillance.

[41]  Y. Bar-Shalom,et al.  The probabilistic data association filter , 2009, IEEE Control Systems.

[42]  Simon J. D. Prince,et al.  Computer Vision: Models, Learning, and Inference , 2012 .

[43]  Takeshi Ikenaga,et al.  Estimation-Correction scheme based articulated object tracking using SIFT features and mean shift algorithm , 2010, 4th International Conference on New Trends in Information Science and Service Science.

[44]  Simon J. Godsill,et al.  Sequential Monte Carlo framework for extended object tracking , 2005 .

[45]  Z. M. Hefed Object tracking , 1999 .

[46]  Mario Jino,et al.  Experimental Results from Application of Fault-Sensitive Testing Strategies , 2005, RITA.

[47]  Yaakov Bar-Shalom,et al.  Sonar tracking of multiple targets using joint probabilistic data association , 1983 .

[48]  Gian Luca Foresti,et al.  Trajectory clustering and its applications for video surveillance , 2005, IEEE Conference on Advanced Video and Signal Based Surveillance, 2005..

[49]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[50]  Carlo S. Regazzoni,et al.  Efficient framework for extended visual object tracking , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[51]  Ming-Hsuan Yang,et al.  An experimental comparison of online object-tracking algorithms , 2011, Optical Engineering + Applications.

[52]  S. Särkkä,et al.  RBMCDAbox-Matlab Toolbox of Rao-Blackwellized Data Association Particle Filters , 2008 .

[53]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[54]  Emilio Maggio,et al.  Video Tracking - Theory and Practice , 2011 .

[55]  Simone Calderara,et al.  Visual Tracking: An Experimental Survey , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[56]  Carlo S. Regazzoni,et al.  A Bayesian Network for online evaluation of sparse features based multitarget tracking , 2012, 2012 19th IEEE International Conference on Image Processing.