On minimal singular values of random matrices with correlated entries
暂无分享,去创建一个
[1] Sommers,et al. Spectrum of large random asymmetric matrices. , 1988, Physical review letters.
[2] COMPLEX HERMITE POLYNOMIALS: FROM THE SEMI-CIRCULAR LAW TO THE CIRCULAR LAW , 2008 .
[3] The Strong Elliptic Law. Twenty years later. Part I , 2006 .
[4] J. Baik,et al. The Oxford Handbook of Random Matrix Theory , 2011 .
[5] Friedrich Götze,et al. Asymptotic expansions for bivariate von Mises functionals , 1979 .
[6] Kevin P. Costello. Bilinear and quadratic variants on the Littlewood-Offord problem , 2009 .
[7] T. Tao,et al. Random matrices: Universality of local eigenvalue statistics , 2009, 0906.0510.
[8] Y. Fyodorov,et al. Universality in the random matrix spectra in the regime of weak non-hermiticity , 1998, chao-dyn/9802025.
[9] Roman Vershynin,et al. Invertibility of symmetric random matrices , 2011, Random Struct. Algorithms.
[10] C. Bordenave,et al. Around the circular law , 2011, 1109.3343.
[11] V. Bentkus. A New Method for Approximations in Probability and Operator Theories , 2003 .
[12] Alexander Tikhomirov,et al. The circular law for random matrices , 2007, 0709.3995.
[13] Hoi H. Nguyen,et al. On the least singular value of random symmetric matrices , 2011, 1102.1476.
[14] A. Naumov. Elliptic law for real random matrices , 2012, 1201.1639.
[15] M. Rudelson,et al. The Littlewood-Offord problem and invertibility of random matrices , 2007, math/0703503.
[16] V. V. Petrov. Sums of Independent Random Variables , 1975 .
[17] Sean O'Rourke,et al. The Elliptic Law , 2012, 1208.5883.
[18] S. Cornish,et al. Dual-species Bose-Einstein condensate of 87Rb and 133Cs. , 2011, 1102.1576.
[19] A. Naumov,et al. Semicircle Law for a Class of Random Matrices with Dependent Entries , 2012, 1211.0389.