On minimal singular values of random matrices with correlated entries

Let $\mathbf X$ be a random matrix whose pairs of entries $X_{jk}$ and $X_{kj}$ are correlated and vectors $ (X_{jk},X_{kj})$, for $1\le j 0$ and $Q\ge 0$. Let $s_n(\mathbf X+\mathbf M_n)$ denote the least singular value of the matrix $\mathbf X+\mathbf M_n$. It is shown that there exist positive constants $A$ and $B$ depending on $K,Q,\rho$ only such that $$ \mathbb{P}(s_n(\mathbf X+\mathbf M_n)\le n^{-A})\le n^{-B}. $$ As an application of this result we prove the elliptic law for this class of matrices with non identically distributed correlated entries.

[1]  Sommers,et al.  Spectrum of large random asymmetric matrices. , 1988, Physical review letters.

[2]  COMPLEX HERMITE POLYNOMIALS: FROM THE SEMI-CIRCULAR LAW TO THE CIRCULAR LAW , 2008 .

[3]  The Strong Elliptic Law. Twenty years later. Part I , 2006 .

[4]  J. Baik,et al.  The Oxford Handbook of Random Matrix Theory , 2011 .

[5]  Friedrich Götze,et al.  Asymptotic expansions for bivariate von Mises functionals , 1979 .

[6]  Kevin P. Costello Bilinear and quadratic variants on the Littlewood-Offord problem , 2009 .

[7]  T. Tao,et al.  Random matrices: Universality of local eigenvalue statistics , 2009, 0906.0510.

[8]  Y. Fyodorov,et al.  Universality in the random matrix spectra in the regime of weak non-hermiticity , 1998, chao-dyn/9802025.

[9]  Roman Vershynin,et al.  Invertibility of symmetric random matrices , 2011, Random Struct. Algorithms.

[10]  C. Bordenave,et al.  Around the circular law , 2011, 1109.3343.

[11]  V. Bentkus A New Method for Approximations in Probability and Operator Theories , 2003 .

[12]  Alexander Tikhomirov,et al.  The circular law for random matrices , 2007, 0709.3995.

[13]  Hoi H. Nguyen,et al.  On the least singular value of random symmetric matrices , 2011, 1102.1476.

[14]  A. Naumov Elliptic law for real random matrices , 2012, 1201.1639.

[15]  M. Rudelson,et al.  The Littlewood-Offord problem and invertibility of random matrices , 2007, math/0703503.

[16]  V. V. Petrov Sums of Independent Random Variables , 1975 .

[17]  Sean O'Rourke,et al.  The Elliptic Law , 2012, 1208.5883.

[18]  S. Cornish,et al.  Dual-species Bose-Einstein condensate of 87Rb and 133Cs. , 2011, 1102.1576.

[19]  A. Naumov,et al.  Semicircle Law for a Class of Random Matrices with Dependent Entries , 2012, 1211.0389.