Improved List-Decodability of Reed-Solomon Codes via Tree Packings

This paper shows that there exist Reed--Solomon (RS) codes, over large finite fields, that are combinatorially list-decodable well beyond the Johnson radius, in fact almost achieving list-decoding capacity. In particular, we show that for any $\epsilon\in (0,1]$ there exist RS codes with rate $\Omega(\frac{\epsilon}{\log(1/\epsilon)+1})$ that are list-decodable from radius of $1-\epsilon$. We generalize this result to obtain a similar result on list-recoverability of RS codes. Along the way we use our techniques to give a new proof of a result of Blackburn on optimal linear perfect hash matrices, and strengthen it to obtain a construction of strongly perfect hash matrices. To derive the results in this paper we show a surprising connection of the above problems to graph theory, and in particular to the tree packing theorem of Nash-Williams and Tutte. En route to our results on RS codes, we prove a generalization of the tree packing theorem to hypergraphs (and we conjecture that an even stronger generalization holds). We hope that this generalization to hypergraphs will be of independent interest.

[1]  J. Komlos,et al.  On the Size of Separating Systems and Families of Perfect Hash Functions , 1984 .

[2]  Noga Alon,et al.  Derandomization, witnesses for Boolean matrix multiplication and construction of perfect hash functions , 1994, Algorithmica.

[3]  Aditya Potukuchi,et al.  On the list recoverability of randomly punctured codes , 2020, Electron. Colloquium Comput. Complex..

[4]  Jin-Yi Cai,et al.  On the Hardness of Permanent , 1999, STACS.

[5]  Avi Wigderson,et al.  Lower Bounds on Formula Size of Boolean Functions Using Hypergraph Entropy , 1995, SIAM J. Discret. Math..

[6]  Simon R. Blackburn,et al.  Perfect Hash Families: Probabilistic Methods and Explicit Constructions , 2000, J. Comb. Theory, Ser. A.

[7]  András Frank,et al.  Egerváry Research Group on Combinatorial Optimization on Decomposing a Hypergraph into K Connected Sub-hypergraphs on Decomposing a Hypergraph into K Connected Sub-hypergraphs , 2022 .

[8]  Frank Harary,et al.  Graph Theory , 2016 .

[9]  Gennian Ge,et al.  Separating Hash Families: A Johnson-type bound and New Constructions , 2016, SIAM J. Discret. Math..

[10]  Venkatesan Guruswami,et al.  Explicit Codes Achieving List Decoding Capacity: Error-Correction With Optimal Redundancy , 2005, IEEE Transactions on Information Theory.

[11]  Swastik Kopparty,et al.  List-Decoding Multiplicity Codes , 2012, Theory Comput..

[12]  Peter Elias,et al.  List decoding for noisy channels , 1957 .

[13]  Shubhangi Saraf,et al.  Improved Decoding of Folded Reed-Solomon and Multiplicity Codes , 2018, 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS).

[14]  Ryan E. Dougherty Hash Families and Applications to t-Restrictions , 2019 .

[15]  Qi Cheng,et al.  On the list and bounded distance decodibility of Reed-Solomon codes , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[16]  C. Nash-Williams Edge-disjoint spanning trees of finite graphs , 1961 .

[17]  Venkatesan Guruswami,et al.  Improved decoding of Reed-Solomon and algebraic-geometry codes , 1999, IEEE Trans. Inf. Theory.

[18]  W. T. Tutte On the Problem of Decomposing a Graph into n Connected Factors , 1961 .

[19]  J. Körner Fredman-Kolmo´s bounds and information theory , 1986 .

[20]  Chaoping Xing,et al.  Beating the Probabilistic Lower Bound on q-Perfect Hashing , 2019, Combinatorica.

[21]  Noga Alon,et al.  Balanced Hashing, Color Coding and Approximate Counting , 2009, IWPEC.

[22]  Venkatesan Guruswami,et al.  Limits to List Decoding Reed-Solomon Codes , 2006, IEEE Trans. Inf. Theory.

[23]  Venkatesan Guruswami,et al.  Extensions to the Johnson bound , 2001 .

[24]  A. Nilli Perfect Hashing and Probability , 1994, Combinatorics, Probability and Computing.

[25]  Kurt Mehlhorn,et al.  Data Structures and Algorithms 1: Sorting and Searching , 2011, EATCS Monographs on Theoretical Computer Science.

[26]  Jaikumar Radhakrishnan,et al.  Subspace Polynomials and Limits to List Decoding of Reed–Solomon Codes , 2010, IEEE Transactions on Information Theory.

[27]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[28]  Itzhak Tamo,et al.  Combinatorial list-decoding of Reed-Solomon codes beyond the Johnson radius , 2019, STOC.

[29]  Stasys Jukna,et al.  Extremal Combinatorics - With Applications in Computer Science , 2001, Texts in Theoretical Computer Science. An EATCS Series.

[30]  Selmer M. Johnson A new upper bound for error-correcting codes , 1962, IRE Trans. Inf. Theory.

[31]  Itzhak Tamo,et al.  Degenerate Turán densities of sparse hypergraphs , 2019, J. Comb. Theory, Ser. A.

[32]  Simon R. Blackburn,et al.  Optimal Linear Perfect Hash Families , 1998, J. Comb. Theory, Ser. A.

[33]  Noga Alon,et al.  Balanced families of perfect hash functions and their applications , 2007, TALG.

[34]  Atri Rudra,et al.  Every list-decodable code for high noise has abundant near-optimal rate puncturings , 2013, STOC.

[35]  F. Moore,et al.  Polynomial Codes Over Certain Finite Fields , 2017 .

[36]  David R. Karger,et al.  Using randomized sparsification to approximate minimum cuts , 1994, SODA '94.

[37]  Venkatesan Guruswami,et al.  Linear-Algebraic List Decoding for Variants of Reed–Solomon Codes , 2013, IEEE Transactions on Information Theory.

[38]  Simon R. Blackburn Surveys in Combinatorics 2003: Combinatorial schemes for protecting digital content , 2003 .

[39]  János Körner,et al.  New Bounds for Perfect Hashing via Information Theory , 1988, Eur. J. Comb..

[40]  Luca Trevisan,et al.  Pseudorandom generators without the XOR lemma , 1999, Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317).

[41]  Richard C. Singleton,et al.  Maximum distance q -nary codes , 1964, IEEE Trans. Inf. Theory.