Jacobi polynomials, Bernstein-type inequalities and dispersion estimates for the discrete Laguerre operator

Abstract The present paper is about Bernstein-type estimates for Jacobi polynomials and their applications to various branches in mathematics. This is an old topic but we want to add a new wrinkle by establishing some intriguing connections with dispersive estimates for a certain class of Schrodinger equations whose Hamiltonian is given by the generalized Laguerre operator. More precisely, we show that dispersive estimates for the Schrodinger equation associated with the generalized Laguerre operator are connected with Bernstein-type inequalities for Jacobi polynomials. We use known uniform estimates for Jacobi polynomials to establish some new dispersive estimates. In turn, the optimal dispersive decay estimates lead to new Bernstein-type inequalities.

[1]  Ronald F. Boisvert,et al.  NIST Handbook of Mathematical Functions , 2010 .

[2]  U. Haagerup,et al.  Simple Lie groups without the approximation property , 2012, 1201.1250.

[3]  T. Koornwinder Group theoretic interpretations of Askey's scheme of hypergeometric orthogonal polynomials , 1988 .

[4]  K. Förster Inequalities for ultraspherical polynomials and application to quadrature , 1993 .

[5]  Ilia Krasikov An upper bound on Jacobi polynomials , 2007, J. Approx. Theory.

[6]  A. Erdélyi,et al.  Tables of integral transforms , 1955 .

[7]  August J. Krueger,et al.  Dynamics of Noncommutative Solitons I: Spectral Theory and Dispersive Estimates , 2014, 1411.4298.

[8]  Mourad E. H. Ismail,et al.  Theory and Applications of Special Functions , 2005 .

[9]  Discrete nonlocal waves , 2012, 1211.3303.

[10]  August J. Krueger,et al.  Structure of Noncommutative Solitons: Existence and Spectral Theory , 2014, 1411.4644.

[11]  Dispersion Estimates for Spherical Schrödinger Equations , 2016 .

[12]  Dispersion Estimates for One-Dimensional Schr\"odinger Equations with Singular Potentials , 2015, 1504.03015.

[13]  Zoltán Sasvári,et al.  An Elementary Proof of Binet's Formula for the Gamma Function , 1999 .

[14]  P. Sally Analytic continuation of the irreducible unitary representations of the universal covering group of (2 , 1967 .

[15]  J. G. Wendel Note on the Gamma Function , 1948 .

[16]  Tom H. Koornwinder,et al.  Product Formulas and Associated Hypergroups for Orthogonal Polynomials on the Simplex and on a Parabolic Biangle , 1997 .

[17]  The Decay of Unstable Noncommutative Solitons , 2003, hep-th/0301119.

[18]  Jasper V. Stokman,et al.  Orthogonal Polynomials of Several Variables , 2001, J. Approx. Theory.

[19]  Tamás Erdélyi,et al.  Generalized Jacobi Weights, Christoffel Functions, and Jacobi-polynomials (vol 25, Pg 602, 1994) , 1994 .

[20]  V. Lafforgue,et al.  Noncommutative $L^{p}$-spaces without the completely bounded approximation property , 2010, 1004.2327.

[21]  Lee Lorch Alternative Proof of a Sharpened Form of Bernstein's Inequality for Legendre Polynomials , 1983 .

[22]  U. Haagerup,et al.  Inequalities for Jacobi polynomials , 2012, 1201.0495.

[23]  U. Haagerup,et al.  Approximation properties for group *-algebras and group von Neumann algebras , 1994 .

[24]  N. Vilenkin Special Functions and the Theory of Group Representations , 1968 .

[25]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[26]  Tamás Erdélyi,et al.  Generalized Jacobi weights, Christoffel functions, and Jacobi polynomials , 1994 .

[27]  新國 裕昭,et al.  書評 Gerald Teschl : Mathematical Methods in Quantum Mechanics : With Applications to Schrodinger Operators , 2013 .

[28]  Dispersion Estimates for the Discrete Laguerre Operator , 2015, 1510.07019.

[29]  Ilia Krasikov On the Erdelyi-Magnus-Nevai Conjecture for Jacobi Polynomials , 2008 .

[30]  T. Koornwinder Two-Variable Analogues of the Classical Orthogonal Polynomials , 1975 .

[31]  August J. Krueger,et al.  Dynamics of Noncommutative Solitons II: Spectral Theory, Dispersive Estimates and Stability , 2014, 1411.5859.

[32]  Yunshyong Chow,et al.  A Bernstein-type inequality for the Jacobi polynomial , 1994 .

[33]  L. Lorch Inequalities for ultraspherical polynomials and the gamma function , 1984 .

[34]  G. Teschl Jacobi Operators and Completely Integrable Nonlinear Lattices , 1999 .

[35]  N. Akhiezer,et al.  The Classical Moment Problem and Some Related Questions in Analysis , 2020 .

[36]  G. Lohöfer Inequalities for Legendre functions and Gegenbauer functions , 1991 .

[37]  D. Basu,et al.  The unitary irreducible representations of SL(2, R) in all subgroup reductions , 1982 .

[38]  F. Truc,et al.  Schr\"odinger operators on a half-line with inverse square potentials , 2014, 1403.3624.

[39]  N. Vilenkin,et al.  Representation of Lie groups and special functions , 1991 .

[40]  Gerald Teschl,et al.  Mathematical Methods in Quantum Mechanics , 2009 .

[41]  Representations of SU(2) and Jacobi polynomials , 2016, 1606.08189.

[42]  Noncommutative radial waves , 2001, hep-th/0106006.

[43]  U. Haagerup,et al.  Simple Lie groups without the Approximation Property II , 2013, 1307.2526.

[44]  Feng Qi (祁锋),et al.  Four Logarithmically Completely Monotonic Functions Involving Gamma Function and Originating from Problems of Traffic Flow , 2008 .

[45]  Charles F. Dunkl,et al.  The measure algebra of a locally compact hypergroup , 1973 .

[46]  R. Gopakumar,et al.  Noncommutative Solitons , 2000, hep-th/0003160.

[47]  W. Gautschi HOW SHARP IS BERNSTEIN'S INEQUALITY FOR JACOBI POLYNOMIALS? , 2009 .

[48]  Rachel Ward,et al.  Weighted Eigenfunction Estimates with Applications to Compressed Sensing , 2012, SIAM J. Math. Anal..

[49]  H. Rauhut,et al.  Sparse recovery for spherical harmonic expansions , 2011, 1102.4097.