A modified Multifractal Detrended Fluctuation Analysis (MFDFA) approach for multifractal analysis of precipitation

Abstract Multifractal Detrended Fluctuation Analysis (MFDFA) is an efficient method to investigate the long-term correlations of the power law of non-stationary time series, in which the elimination of local trends usually depends upon a fixed-constant polynomial order. In this paper, we propose a flexible set of polynomial and trigonometric functions to better detect, and correctly model, hidden local trends in the time series at different scales. We introduce the Multifractal Detrended Fluctuation Analysis with Polynomial and Trigonometric functions (MFDFAPT) method via optimal model selection from an optimization framework. The performance of MFDFAPT is assessed with extensive numerical experiments based on the multifractal binomial cascade process, fractional Brownian movements, and fractional Gaussian noises. MFDFAPT shows better performance than MFDFA in the approximation of the Hurst index, and correctly determines the scalar behavior in stationary and non-stationary series. Additionally we apply MFDFAPT to detect and characterize the scalar properties of the daily precipitation time series in meteorological stations of Tabasco, Mexico. Our results confirm previous indications that the general Hurst exponent depends on the physiographic characteristics of the study area, and that fractal dimension correctly characterizes the series of daily precipitations in tropical regions.

[1]  Spatial variability of annual precipitation using globally gridded data sets from 1951 to 2000 , 2013 .

[2]  Zu-Guo Yu,et al.  Relationships of exponents in two-dimensional multifractal detrended fluctuation analysis. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  W. Willinger,et al.  ESTIMATORS FOR LONG-RANGE DEPENDENCE: AN EMPIRICAL STUDY , 1995 .

[4]  Multifractal analysis of 1-min summer rainfall time series from a monsoonal watershed in eastern China , 2012, Theoretical and Applied Climatology.

[5]  L. Minati,et al.  Wavelet-based discrimination of isolated singularities masquerading as multifractals in detrended fluctuation analyses , 2020, 2004.03319.

[6]  Antonio S. Cofiño,et al.  CHAOS GAME CHARACTERIZATION OF TEMPORAL PRECIPITATION VARIABILITY: APPLICATION TO REGIONALIZATION , 2006 .

[7]  A universal multifractal description applied to precipitation patterns of the Ebro River Basin, Spain , 2010 .

[8]  Vijay P. Singh,et al.  Comparison of detrending methods for fluctuation analysis in hydrology , 2011 .

[9]  J. Kwapień,et al.  Detrended cross-correlation analysis consistently extended to multifractality. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  A. García-Marín,et al.  Selecting the best IDF model by using the multifractal approach , 2013 .

[11]  Jose Alvarez-Ramirez,et al.  Detrending fluctuation analysis based on high-pass filtering , 2007 .

[12]  Xuezhi Tan,et al.  Multifractality of Canadian precipitation and streamflow , 2017 .

[13]  P. Abry,et al.  The wavelet based synthesis for fractional Brownian motion , 1996 .

[14]  S. Hajian,et al.  Multifractal Detrended Cross-Correlation Analysis of sunspot numbers and river flow fluctuations , 2009, 0908.0132.

[15]  Harvard Medical School,et al.  Effect of nonstationarities on detrended fluctuation analysis. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  Shaun Lovejoy,et al.  Multifractal Cascade Dynamics and Turbulent Intermittency , 1997 .

[17]  Shlomo Havlin,et al.  A stochastic model of river discharge fluctuations , 2003 .

[18]  D. Schertzer,et al.  The horizontal space–time scaling and cascade structure of the atmosphere and satellite radiances , 2014 .

[19]  Shlomo Havlin,et al.  Multifractality of river runoff and precipitation: Comparison of fluctuation analysis and wavelet methods , 2003 .

[20]  C. Y. Peng,et al.  Principled missing data methods for researchers , 2013, SpringerPlus.

[21]  C. Peng,et al.  Mosaic organization of DNA nucleotides. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[22]  Jan W. Kantelhardt Fractal and Multifractal Time Series , 2009, Encyclopedia of Complexity and Systems Science.

[23]  I. S. Cohen,et al.  Spatial Variability of the Hurst Exponent for the Daily Scale Rainfall Series in the State of Zacatecas, Mexico , 2013 .

[24]  Z. Shao,et al.  Contrasting scaling properties of interglacial and glacial climates , 2016, Nature Communications.

[25]  Mark Hood,et al.  Comparison of Stormwater Lag Times for Low Impact and Traditional Residential Development 1 , 2007 .

[26]  Hamid Reza Pourghasemi,et al.  Fractal analysis of rainfall-induced landslide and debris flow spread distribution in the Chenyulan Creek Basin, Taiwan , 2016, Journal of Earth Science.

[27]  C. E. Puente,et al.  An effective inversion strategy for fractal–multifractal encoding of a storm in Boston , 2013 .

[28]  Daniel Schertzer,et al.  Multifractal analysis of the evolution of simulated precipitation over France in a climate scenario , 2008 .

[29]  Wei-Xing Zhou,et al.  Modified detrended fluctuation analysis based on empirical mode decomposition for the characterization of anti-persistent processes , 2009, 0907.3284.

[30]  Haibo Du,et al.  Assessing the characteristics of extreme precipitation over northeast China using the multifractal detrended fluctuation analysis , 2013 .

[31]  A. García-Marín,et al.  Multifractal analysis as a tool for validating a rainfall model , 2008 .

[32]  P. Mali Multifractal characterization of global temperature anomalies , 2015, Theoretical and Applied Climatology.

[33]  Paul L. Speckman,et al.  Curve fitting by polynomial-trigonometric regression , 1990 .

[34]  Qin Nie,et al.  Multifractal and long memory of humidity process in the Tarim River Basin , 2014, Stochastic Environmental Research and Risk Assessment.

[35]  D. Turcotte,et al.  Self-affine time series: measures of weak and strong persistence , 1999 .

[36]  Phaedon C. Kyriakidis,et al.  A spatial time series framework for simulating daily precipitation at regional scales , 2004 .

[37]  K. Philippopoulos,et al.  Multifractal Detrended Fluctuation Analysis of Temperature Reanalysis Data over Greece , 2019, Atmosphere.

[38]  S. Havlin,et al.  Temporal scaling comparison of real hydrological data and model runoff records , 2007 .

[39]  L. Imhof,et al.  Exact $$D$$-optimal designs for first-order trigonometric regression models on a partial circle , 2013 .

[40]  B. Deepthi,et al.  Multifractal characterization of meteorological drought in India using detrended fluctuation analysis , 2019, International Journal of Climatology.

[41]  D. Schertzer,et al.  Functional Box-Counting and Multiple Elliptical Dimensions in Rain , 1987, Science.

[42]  Armin Bunde,et al.  Precipitation and River Flow: Long‐Term Memory and Predictability of Extreme Events , 2013 .

[43]  M. Movahed,et al.  Multifractal detrended fluctuation analysis of sunspot time series , 2005, physics/0508149.

[44]  Eric-Jan Wagenmakers,et al.  Analytic posteriors for Pearson's correlation coefficient , 2015, Statistica Neerlandica.

[45]  L. Barthès,et al.  Multifractal analysis of African monsoon rain fields, taking into account the zero rain-rate problem , 2010 .

[46]  Javier González,et al.  La hidrología y su papel en ingeniería del agua , 2014 .

[47]  H. Künsch Discrimination between monotonic trends and long-range dependence , 1986 .

[48]  A. Carbone,et al.  Second-order moving average and scaling of stochastic time series , 2002 .

[49]  Demetris Koutsoyiannis,et al.  Climate change, the Hurst phenomenon, and hydrological statistics , 2003 .

[50]  Jan Beran,et al.  Statistics for long-memory processes , 1994 .

[51]  A. Biswas,et al.  Multifractal detrended fluctuation analysis in examining scaling properties of the spatial patterns of soil water storage , 2012 .

[52]  François G. Schmitt,et al.  Modeling of rainfall time series using two-state renewal processes and multifractals , 1998 .

[53]  Radhakrishnan Nagarajan,et al.  Minimizing the effect of trends on detrended fluctuation analysis of long-range correlated noise , 2004, cond-mat/0412732.

[54]  Yee Leung,et al.  Detection of crossover time scales in multifractal detrended fluctuation analysis , 2013, J. Geogr. Syst..

[55]  Luciano Telesca,et al.  Analysis of time dynamics in wind records by means of multifractal detrended fluctuation analysis and Fisher-Shannon information plane , 2011 .

[56]  P. O'swikecimka,et al.  Effect of detrending on multifractal characteristics , 2012 .

[57]  T. Afullo,et al.  Fractal analysis of rainfall event duration for microwave and millimetre networks: rain queueing theory approach , 2015 .

[58]  Á. Redaño,et al.  Multifractal analysis of the rainfall time distribution on the metropolitan area of Barcelona (Spain) , 2013, Meteorology and Atmospheric Physics.

[59]  E. Bacry,et al.  Wavelets and multifractal formalism for singular signals: Application to turbulence data. , 1991, Physical review letters.

[60]  Qiuming Cheng,et al.  Generalized binomial multiplicative cascade processes and asymmetrical multifractal distributions , 2014 .

[61]  P. Baranowski,et al.  Multifractal analysis of meteorological time series to assess climate impacts , 2015 .

[62]  H. Hurst METHODS OF USING LONG-TERM STORAGE IN RESERVOIRS. , 1956 .

[63]  Zbigniew R. Struzik,et al.  The Haar Wavelet Transform in the Time Series Similarity Paradigm , 1999, PKDD.

[64]  B. Mandelbrot Statistical Methodology for Nonperiodic Cycles: From the Covariance To R/S Analysis , 1972 .

[65]  Franklin A. Graybill,et al.  Theory and Application of the Linear Model , 1976 .

[66]  Thomas M. Over,et al.  Statistical Analysis of Mesoscale Rainfall: Dependence of a Random Cascade Generator on Large-Scale Forcing , 1994 .

[67]  R. Bhattacharya,et al.  THE HURST EFFECT UNDER TRENDS , 1983 .

[68]  R. F. Voss Random fractals: self-affinity in noise, music, mountains, and clouds , 1989 .

[69]  Y. Chen,et al.  Multifractal analyses of daily rainfall time series in Pearl River basin of China , 2014, 1402.4030.

[70]  C. Willmott,et al.  Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance , 2005 .

[71]  Germán Poveda,et al.  The Hurst Effect: The scale of fluctuation approach , 1993 .

[72]  Qiuwen Zhang,et al.  A Modified Multifractal Detrended Fluctuation Analysis (MFDFA) Approach for Multifractal Analysis of Precipitation in Dongting Lake Basin, China , 2019, Water.

[73]  H E Stanley,et al.  Analysis of clusters formed by the moving average of a long-range correlated time series. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[74]  Harko Verhagen,et al.  Social Phenomena Simulation , 2009 .

[75]  A. H. Siddiqi,et al.  Wavelet based hurst exponent and fractal dimensional analysis of Saudi climatic dynamics , 2009 .

[76]  Y. Leung,et al.  Temporal Scaling Behavior of Avian Influenza A (H5N1): The Multifractal Detrended Fluctuation Analysis , 2011 .

[77]  Shaun Lovejoy,et al.  Influence of small scale rainfall variability on standard comparison tools between radar and rain gauge data , 2014 .

[78]  Wei-Xing Zhou,et al.  Detrending moving average algorithm for multifractals. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[79]  B. Sivakumar Fractal analysis of rainfall observed in two different climatic regions , 2000 .

[80]  C. Fuentes,et al.  Spatial and temporal Hurst exponent variability of rainfall series based on the climatological distribution in a semiarid region in Mexico , 2018, Atmósfera.

[81]  Robert A. Meyers,et al.  Encyclopedia of Complexity and Systems Science , 2009 .

[82]  Intensity-duration-area-frequency functions for precipitation in a multifractal framework , 2004 .

[83]  Shafiqur Rehman,et al.  Study of Saudi Arabian climatic conditions using Hurst exponent and climatic predictability index , 2009 .

[84]  G. Rangarajan,et al.  Fractal dimensional analysis of Indian climatic dynamics , 2004 .

[85]  Emmanuel Bacry,et al.  THE THERMODYNAMICS OF FRACTALS REVISITED WITH WAVELETS , 1995 .

[86]  H. Stanley,et al.  Quantifying signals with power-law correlations: a comparative study of detrended fluctuation analysis and detrended moving average techniques. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[87]  Bellie Sivakumar,et al.  Is a chaotic multi-fractal approach for rainfall possible? , 2001 .

[88]  E. Ferrari,et al.  Analysis of the spatial correlation structure exhibited by daily rainfall in Southern Italy , 2014, Theoretical and Applied Climatology.

[89]  Jorge Luis Morales,et al.  Analysis of a new spatial interpolation weighting method to estimate missing data applied to rainfall records , 2019, Atmósfera.

[90]  B. Rudolf,et al.  World Map of the Köppen-Geiger climate classification updated , 2006 .

[91]  Damián Gulich,et al.  A criterion for the determination of optimal scaling ranges in DFA and MF-DFA , 2014 .

[92]  E. Bacry,et al.  The Multifractal Formalism Revisited with Wavelets , 1994 .

[93]  D. Labat,et al.  Rainfall–runoff relations for karstic springs: multifractal analyses , 2002 .

[94]  F. Serinaldi Multifractality, imperfect scaling and hydrological properties of rainfall time series simulated by continuous universal multifractal and discrete random cascade models , 2010 .

[95]  Stanisław Drożdż,et al.  Detecting and interpreting distortions in hierarchical organization of complex time series. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[96]  V. Iacobellis,et al.  Multiscaling pulse representation of temporal rainfall , 2002 .

[97]  I. Rodríguez‐Iturbe,et al.  Detrended fluctuation analysis of rainfall and streamflow time series , 2000 .

[98]  B. Sevruk REGIONAL DEPENDENCY OF PRECIPITATION-ALTITUDE RELATIONSHIP IN THE SWISS ALPS , 1997 .

[99]  C. Bucher,et al.  Long term variability of the Danube River flow and its relation to precipitation and air temperature , 2014 .

[100]  M. D. Lima,et al.  Investigating the multifractality of point precipitation in the Madeira archipelago , 2009 .

[101]  R. Andrade,et al.  Temporal and spatial persistence in rainfall records from Northeast Brazil and Galicia (Spain) , 2004 .

[102]  Angelo Vulpiani,et al.  Characterization of strange attractors as inhomogeneous fractals , 1984 .

[103]  Yee Leung,et al.  Multifractal temporally weighted detrended fluctuation analysis and its application in the analysis of scaling behavior in temperature series , 2010 .

[104]  Ronny Berndtsson,et al.  Multifractal Properties of Daily Rainfall in Two Different Climates , 1996 .

[105]  Daniele Veneziano,et al.  Multifractality of rainfall and scaling of intensity‐duration‐frequency curves , 2002 .

[106]  John A. Belward,et al.  Fractal dimensions for rainfall time series , 1999 .

[107]  S. P. Neuman,et al.  Numerical investigation of apparent multifractality of samples from processes subordinated to truncated fBm , 2011 .

[108]  P. Hubert,et al.  Multifractal analysis and modeling of rainfall and river flows and scaling, causal transfer functions , 1996 .

[109]  D. Schertzer,et al.  Physical modeling and analysis of rain and clouds by anisotropic scaling multiplicative processes , 1987 .

[110]  H. O. Frota,et al.  Multifractality of Brazilian rivers , 2013 .

[111]  Wei‐Xing Zhou Multifractal detrended cross-correlation analysis for two nonstationary signals. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[112]  A. Langousis,et al.  Intensity‐duration‐frequency curves from scaling representations of rainfall , 2007 .

[113]  Shlomo Havlin,et al.  Long-term persistence and multifractality of river runoff records: Detrended fluctuation studies , 2003 .

[114]  Xiaohui Yuan,et al.  Multiscaling Analysis of Monthly Runoff Series Using Improved MF-DFA Approach , 2014, Water Resources Management.

[115]  J. Kertész,et al.  Multifractal model of asset returns with leverage effect , 2004, cond-mat/0403767.

[116]  G. Zhao,et al.  Multifractal Detrended Fluctuation Analysis of Streamflow in the Yellow River Basin, China , 2015 .

[117]  H. E. Hurst,et al.  Long-Term Storage Capacity of Reservoirs , 1951 .

[118]  Johan Grasman,et al.  Multifractal analysis of 15-min and daily rainfall from a semi-arid region in Portugal , 1999 .

[119]  Ling-Yun He,et al.  Multifractal Detrended Cross-Correlation Analysis of agricultural futures markets , 2011 .

[120]  R. Rak,et al.  Multifractal Flexibly Detrended Fluctuation Analysis , 2015, 1510.05115.

[121]  H. Millán,et al.  Comparison of fractal dimension oscillations and trends of rainfall data from Pastaza Province, Ecuador and Veneto, Italy , 2009 .