Machine-Learning Applications for the Retrieval of Forest Biomass from Airborne P-Band SAR Data

[1]  M. Dobson,et al.  The use of Imaging radars for ecological applications : A review , 1997 .

[2]  Thuy Le Toan,et al.  Dependence of radar backscatter on coniferous forest biomass , 1992, IEEE Trans. Geosci. Remote. Sens..

[3]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[4]  Lars M. H. Ulander,et al.  L- and P-band backscatter intensity for biomass retrieval in hemiboreal forest , 2011 .

[5]  Lorenzo Bruzzone,et al.  Estimating Soil Moisture With the Support Vector Regression Technique , 2011, IEEE Geoscience and Remote Sensing Letters.

[6]  Thuy Le Toan,et al.  Decrease of L-band SAR backscatter with biomass of dense forests , 2015 .

[7]  Jakob J. van Zyl,et al.  The effect of topography on radar scattering from vegetated areas , 1992, IEEE Trans. Geosci. Remote. Sens..

[8]  Lorenzo Bruzzone,et al.  Robust multiple estimator systems for the analysis of biophysical parameters from remotely sensed data , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[9]  Thuy Le Toan,et al.  Relating Radar Remote Sensing of Biomass to Modelling of Forest Carbon Budgets , 2004 .

[10]  C. Schmullius,et al.  Assessment of stand‐wise stem volume retrieval in boreal forest from JERS‐1 L‐band SAR backscatter , 2006 .

[11]  Mahta Moghaddam,et al.  Estimation of crown and stem water content and biomass of boreal forest using polarimetric SAR imagery , 2000, IEEE Trans. Geosci. Remote. Sens..

[12]  Tomaso A. Poggio,et al.  Regularization Networks and Support Vector Machines , 2000, Adv. Comput. Math..

[13]  Emanuele Santi,et al.  Application of Neural Networks for the retrieval of forest woody volume from SAR multifrequency data at L and C bands , 2015 .

[14]  Christian Thiel,et al.  Cosmo-SkyMed backscatter intensity and interferometric coherence signatures over Germany's low mountain range forested areas , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[15]  Emanuele Santi,et al.  A Comparison of Algorithms for Retrieving Soil Moisture from ENVISAT/ASAR Images , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[16]  A. Lopes,et al.  Multitemporal and dual-polarization observations of agricultural vegetation covers by X-band SAR images , 1989, IEEE Transactions on Geoscience and Remote Sensing.

[17]  M. Moghaddam,et al.  Estimating subcanopy soil moisture with radar. , 2000 .

[18]  Rasmus Fensholt,et al.  Understanding ‘saturation’ of radar signals over forests , 2017, Scientific Reports.

[19]  E. S. Kasischke,et al.  The effects of changes in loblolly pine biomass and soil moisture on ERS-1 SAR backscatter , 1994 .

[20]  Thuy Le Toan,et al.  Relating P-Band SAR Intensity to Biomass for Tropical Dense Forests in Hilly Terrain: $\gamma^0$ or $t^0$? , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[21]  F. Rocca,et al.  The BIOMASS mission: Mapping global forest biomass to better understand the terrestrial carbon cycle , 2011 .

[22]  A. Linden,et al.  Inversion of multilayer nets , 1989, International 1989 Joint Conference on Neural Networks.

[23]  Lorenzo Bruzzone,et al.  Estimation of Soil Moisture in Mountain Areas Using SVR Technique Applied to Multiscale Active Radar Images at C-Band , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[24]  Emanuele Santi,et al.  Soil moisture mapping using Sentinel-1 images: Algorithm and preliminary validation , 2013 .

[25]  Bernhard Schölkopf,et al.  A tutorial on support vector regression , 2004, Stat. Comput..

[26]  Nazzareno Pierdicca,et al.  A Prototype Software Package to Retrieve Soil Moisture From Sentinel-1 Data by Using a Bayesian Multitemporal Algorithm , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[27]  Sassan Saatchi,et al.  The 2016 NASA AfriSAR campaign: Airborne SAR and Lidar measurements of tropical forest structure and biomass in support of future satellite missions , 2017, 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[28]  Paolo Ferrazzoli,et al.  Retrieving soil moisture and agricultural variables by microwave radiometry using neural networks , 2003 .

[29]  Guoqing Sun,et al.  Mapping biomass of a northern forest using multifrequency SAR data , 1994, IEEE Trans. Geosci. Remote. Sens..

[30]  S. Saatchi,et al.  Impact of spatial variability of tropical forest structure on radar estimation of aboveground biomass , 2011 .

[31]  M. Shimada,et al.  Mapping the spatial-temporal variability of tropical forests by ALOS-2 L-band SAR big data analysis , 2019, Remote Sensing of Environment.

[32]  Thuy Le Toan,et al.  Relating forest biomass to SAR data , 1992, IEEE Trans. Geosci. Remote. Sens..

[33]  Lorenzo Bruzzone,et al.  Estimation of Soil Moisture in an Alpine Catchment with RADARSAT2 Images , 2011 .

[34]  Thomas J. Jackson,et al.  Incidence Angle Normalization of Radar Backscatter Data , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[35]  F. Ulaby,et al.  Vegetation modeled as a water cloud , 1978 .

[36]  Emanuele Santi,et al.  The potential of multifrequency SAR images for estimating forest biomass in Mediterranean areas , 2017 .

[37]  Laurent Ferro-Famil,et al.  Forest Biomass Retrieval From L-Band SAR Using Tomographic Ground Backscatter Removal , 2018, IEEE Geoscience and Remote Sensing Letters.

[38]  Emanuele Santi,et al.  pplication of artificial neural networks for the soil moisture retrieval rom active and passive microwave spaceborne sensors , 2015 .

[39]  Mehrez Zribi,et al.  Evaluation of ALOS/PALSAR L-Band Data for the Estimation of Eucalyptus Plantations Aboveground Biomass in Brazil , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[40]  Yong Wang,et al.  Understanding the radar backscattering from flooded and nonflooded Amazonian forests: Results from canopy backscatter modeling☆ , 1995 .

[41]  Simonetta Paloscia,et al.  The potential of C- and L-band SAR in estimating vegetation biomass: the ERS-1 and JERS-1 experiments , 1999, IEEE Trans. Geosci. Remote. Sens..

[42]  M. Vastaranta,et al.  Combining Lidar and Synthetic Aperture Radar Data to Estimate Forest Biomass: Status and Prospects , 2015 .

[43]  Simonetta Paloscia,et al.  The potential of multifrequency polarimetric SAR in assessing agricultural and arboreous biomass , 1997, IEEE Trans. Geosci. Remote. Sens..

[44]  Claudia Notarnicola A Bayesian Change Detection Approach for Retrieval of Soil Moisture Variations Under Different Roughness Conditions , 2014, IEEE Geoscience and Remote Sensing Letters.

[45]  Michael Heym,et al.  Monitoring of Forest Structure Dynamics by Means of L-Band SAR Tomography , 2017, Remote. Sens..

[46]  Malcolm Davidson,et al.  Aboveground Forest Biomass Estimation Combining L- and P-Band SAR Acquisitions , 2018, Remote. Sens..