Strongly chordal and chordal bipartite graphs are sandwich monotone

A graph class is sandwich monotone if, for every pair of its graphs G1=(V,E1) and G2=(V,E2) with E1⊂E2, there is an ordering e1,…,ek of the edges in E2∖E1 such that G=(V,E1∪{e1,…,ei}) belongs to the class for every i between 1 and k. In this paper we show that strongly chordal graphs and chordal bipartite graphs are sandwich monotone, answering an open question by Bakonyi and Bono (Czechoslov. Math. J. 46:577–583, 1997). So far, very few classes have been proved to be sandwich monotone, and the most famous of these are chordal graphs. Sandwich monotonicity of a graph class implies that minimal completions of arbitrary graphs into that class can be recognized and computed in polynomial time. For minimal completions into strongly chordal or chordal bipartite graphs no polynomial-time algorithm has been known. With our results such algorithms follow for both classes. In addition, from our results it follows that all strongly chordal graphs and all chordal bipartite graphs with edge constraints can be listed efficiently.

[1]  Flavia Bonomo,et al.  NP-completeness results for edge modification problems , 2006, Discret. Appl. Math..

[2]  Ioan Todinca,et al.  Treewidth and Minimum Fill-in: Grouping the Minimal Separators , 2001, SIAM J. Comput..

[3]  Haim Kaplan,et al.  Tractability of Parameterized Completion Problems on Chordal, Strongly Chordal, and Proper Interval Graphs , 1999, SIAM J. Comput..

[4]  Roded Sharan,et al.  Complexity classification of some edge modification problems , 1999, Discret. Appl. Math..

[5]  Mihály Bakonyi,et al.  Several results on chordal bipartite graphs , 1997 .

[6]  Haim Kaplan,et al.  Four Strikes Against Physical Mapping of DNA , 1995, J. Comput. Biol..

[7]  Yoshio Okamoto,et al.  On Listing, Sampling, and Counting the Chordal Graphs with Edge Constraints , 2008, COCOON.

[8]  M. Yannakakis Computing the Minimum Fill-in is NP^Complete , 1981 .

[9]  P. Heggernes,et al.  Characterizing minimal interval completions towards better understanding of profile and pathwidth , 2007 .

[10]  Pinar Heggernes,et al.  Minimal Split Completions of Graphs , 2006, LATIN.

[11]  D. Rose A GRAPH-THEORETIC STUDY OF THE NUMERICAL SOLUTION OF SPARSE POSITIVE DEFINITE SYSTEMS OF LINEAR EQUATIONS , 1972 .

[12]  Pinar Heggernes,et al.  Characterizing Minimal Interval Completions , 2007, STACS.

[13]  Jeremy P. Spinrad,et al.  Doubly Lexical Ordering of Dense 0 - 1 Matrices , 1993, Inf. Process. Lett..

[14]  Pinar Heggernes,et al.  Minimal split completions , 2009, Discret. Appl. Math..

[15]  Béla Bollobás,et al.  Measures on monotone properties of graphs , 2002, Discret. Appl. Math..

[16]  Robert E. Tarjan,et al.  Algorithmic Aspects of Vertex Elimination on Graphs , 1976, SIAM J. Comput..

[17]  Arie M. C. A. Koster,et al.  Safe separators for treewidth , 2006, Discret. Math..

[18]  Pinar Heggernes,et al.  Single-edge monotonic sequences of graphs and linear-time algorithms for minimal completions and deletions , 2007, Theor. Comput. Sci..

[19]  D. Rose Triangulated graphs and the elimination process , 1970 .

[20]  M. Golumbic Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Mathematics, Vol 57) , 2004 .

[21]  Charis Papadopoulos,et al.  Characterizing and computing minimal cograph completions , 2008, Discret. Appl. Math..

[22]  Martin Farber,et al.  Characterizations of strongly chordal graphs , 1983, Discret. Math..

[23]  Celina M. H. de Figueiredo,et al.  On the complexity of the sandwich problems for strongly chordal graphs and chordal bipartite graphs , 2007, Theor. Comput. Sci..

[24]  Ton Kloks,et al.  A Linear Time Algorithm for Minimum Fill-in and Treewidth for Distance Hereditary Graphs , 2000, Discret. Appl. Math..

[25]  R. Sritharan Chordal bipartite completion of colored graphs , 2008, Discret. Math..

[26]  David Buhagiar,et al.  On uniform paracompactness , 1996 .

[27]  Fedor V. Fomin,et al.  Exact algorithms for treewidth and minimum fill-in ∗ † , 2006 .

[28]  M. Golumbic Chapter 3 - Perfect graphs , 2004 .

[29]  Robert E. Tarjan,et al.  Three Partition Refinement Algorithms , 1987, SIAM J. Comput..

[30]  Noga Alon,et al.  Every monotone graph property is testable , 2005, STOC '05.

[31]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .