SUCCESSES AND FAILURES OF BACKPROPAGATION : ATHEORETICAL INVESTIGATION

[1]  Doreen Meier,et al.  Neural Network Design And The Complexity Of Learning , 2016 .

[2]  James L. McClelland Parallel Distributed Processing , 2005 .

[3]  Vasant Honavar,et al.  Book Review:Neural Network Design and the Complexity of Learning, by J. Stephen Judd. Cambridge, MA: MIT Press, 1990 , 1992, Machine Learning.

[4]  G. Lewicki,et al.  Approximation by Superpositions of a Sigmoidal Function , 2003 .

[5]  Joel L. Davis,et al.  An Introduction to Neural and Electronic Networks , 1995 .

[6]  Giovanni Soda,et al.  Unified Integration of Explicit Knowledge and Learning by Example in Recurrent Networks , 1995, IEEE Trans. Knowl. Data Eng..

[7]  Alberto Tesi,et al.  On the Problem of Local Minima in Backpropagation , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  F. Jordan,et al.  Using the symmetries of a multi-layered network to reduce the weight space , 1991, IJCNN-91-Seattle International Joint Conference on Neural Networks.

[9]  Myung Won Kim,et al.  The effect of initial weights on premature saturation in back-propagation learning , 1991, IJCNN-91-Seattle International Joint Conference on Neural Networks.

[10]  YoungJu Choie,et al.  Local minima and back propagation , 1991, IJCNN-91-Seattle International Joint Conference on Neural Networks.

[11]  D. R. Hush,et al.  Error surfaces for multi-layer perceptrons , 1991, IJCNN-91-Seattle International Joint Conference on Neural Networks.

[12]  Yih-Fang Huang,et al.  Bounds on the number of hidden neurons in multilayer perceptrons , 1991, IEEE Trans. Neural Networks.

[13]  Bernard Widrow,et al.  30 years of adaptive neural networks: perceptron, Madaline, and backpropagation , 1990, Proc. IEEE.

[14]  Piero Cosi,et al.  Phonetically-based multi-layered neural networks for vowel classification , 1990, Speech Commun..

[15]  R. Hecht-Nielsen ON THE ALGEBRAIC STRUCTURE OF FEEDFORWARD NETWORK WEIGHT SPACES , 1990 .

[16]  E. K. Blum,et al.  Approximation of Boolean Functions by Sigmoidal Networks: Part I: XOR and Other Two-Variable Functions , 1989, Neural Computation.

[17]  Yu He,et al.  Asymptotic Convergence of Backpropagation , 1989, Neural Computation.

[18]  Geoffrey E. Hinton Connectionist Learning Procedures , 1989, Artif. Intell..

[19]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[20]  Ken-ichi Funahashi,et al.  On the approximate realization of continuous mappings by neural networks , 1989, Neural Networks.

[21]  J. Slawny,et al.  Back propagation fails to separate where perceptrons succeed , 1989 .

[22]  Geoffrey E. Hinton,et al.  Phoneme recognition using time-delay neural networks , 1989, IEEE Trans. Acoust. Speech Signal Process..

[23]  R. Hecht-Nielsen,et al.  Theory of the Back Propagation Neural Network , 1989 .

[24]  Hervé Bourlard,et al.  Speech pattern discrimination and multilayer perceptrons , 1989 .

[25]  Yann LeCun,et al.  Generalization and network design strategies , 1989 .

[26]  Yann LeCun,et al.  Improving the convergence of back-propagation learning with second-order methods , 1989 .

[27]  David Haussler,et al.  What Size Net Gives Valid Generalization? , 1989, Neural Computation.

[28]  Kurt Hornik,et al.  Neural networks and principal component analysis: Learning from examples without local minima , 1989, Neural Networks.

[29]  D Zipser,et al.  Learning the hidden structure of speech. , 1988, The Journal of the Acoustical Society of America.

[30]  Lawrence D. Jackel,et al.  VLSI implementation of a neural network model , 1988, Computer.

[31]  Marvin Minsky,et al.  Perceptrons: expanded edition , 1988 .

[32]  Gerald Tesauro,et al.  Scaling Relationships in Back-propagation Learning , 1988, Complex Syst..

[33]  Robert A. Jacobs,et al.  Increased rates of convergence through learning rate adaptation , 1987, Neural Networks.

[34]  Scott E. Fahlman,et al.  An empirical study of learning speed in back-propagation networks , 1988 .

[35]  J. S. Judd,et al.  Complexity of Connectionist Learning with Various Node Functions , 1987 .

[36]  Gerald Tesauro,et al.  Scaling Relationships in Back-Propagation Learning: Dependence on Training Set Size , 1987, Complex Syst..

[37]  Terrence J. Sejnowski,et al.  Parallel Networks that Learn to Pronounce English Text , 1987, Complex Syst..

[38]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[39]  Yann LeCun,et al.  Learning processes in an asymmetric threshold network , 1986 .

[40]  Leslie G. Valiant,et al.  A theory of the learnable , 1984, CACM.

[41]  P. Werbos,et al.  Beyond Regression : "New Tools for Prediction and Analysis in the Behavioral Sciences , 1974 .

[42]  Arthur E. Bryson,et al.  Applied Optimal Control , 1969 .

[43]  R. Bellman Introduction to Matrix Analysis , 1972 .