Forecasting vegetation condition for drought early warning systems in pastoral communities in Kenya

[1]  Gebräuchliche Fertigarzneimittel,et al.  V , 1893, Therapielexikon Neurologie.

[2]  A. Savitzky,et al.  Smoothing and Differentiation of Data by Simplified Least Squares Procedures. , 1964 .

[3]  Jonathan D. Cryer,et al.  Time Series Analysis , 1986 .

[4]  James D. Hamilton Time Series Analysis , 1994 .

[5]  F. Kogan Application of vegetation index and brightness temperature for drought detection , 1995 .

[6]  R. K. Dixon,et al.  Mitigation and Adaptation Strategies for Global Change , 1998 .

[7]  R. Boone,et al.  Impacts of climate variability on East African pastoralists: linking social science and remote sensing , 2001 .

[8]  J.M. Vesin,et al.  Bayesian learning using Gaussian process for time series prediction , 2001, Proceedings of the 11th IEEE Signal Processing Workshop on Statistical Signal Processing (Cat. No.01TH8563).

[9]  A. ADoefaa,et al.  ? ? ? ? f ? ? ? ? ? , 2003 .

[10]  Jin Chen,et al.  A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter , 2004 .

[11]  Ramesh P. Singh,et al.  Monitoring drought dynamics in the Aravalli region (India) using different indices based on ground and remote sensing data , 2006 .

[12]  A. Nyong,et al.  The value of indigenous knowledge in climate change mitigation and adaptation strategies in the African Sahel , 2007 .

[13]  M. Herrero,et al.  Pastoral livelihood adaptation to drought and institutional interventions in Kenya , 2007 .

[14]  J. Michaelsen,et al.  Warming of the Indian Ocean threatens eastern and southern African food security but could be mitigated by agricultural development , 2008, Proceedings of the National Academy of Sciences.

[15]  T. Udelhoven,et al.  Assessment of rainfall and NDVI anomalies in Spain (1989–1999) using distributed lag models , 2009 .

[16]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[17]  S. Quiring,et al.  Evaluating the utility of the Vegetation Condition Index (VCI) for monitoring meteorological drought in Texas , 2010 .

[18]  V. Singh,et al.  A review of drought concepts , 2010 .

[19]  Etienne Piguet,et al.  Migration and Climate Change: An Overview , 2011 .

[20]  L. Dilling,et al.  Creating usable science: Opportunities and constraints for climate knowledge use and their implications for science policy , 2011 .

[21]  R. Sadiq,et al.  A review of drought indices , 2011 .

[22]  F. Rembold,et al.  Assessing drought probability for agricultural areas in Africa with coarse resolution remote sensing imagery , 2011 .

[23]  Varun Chandola,et al.  A scalable gaussian process analysis algorithm for biomass monitoring , 2011, Stat. Anal. Data Min..

[24]  A. Stein,et al.  The chlorophyll variability in Meteosat derived NDVI in a context of drought monitoring , 2011 .

[25]  F. Baret,et al.  A comparison of methods for smoothing and gap filling time series of remote sensing observations - application to MODIS LAI products , 2012 .

[26]  Christine J. Kirchhoff,et al.  Narrowing the climate information usability gap , 2012 .

[27]  R. Behnke,et al.  The contribution of livestock to the Ugandan economy , 2012 .

[28]  C. Prudhomme,et al.  Health Effects of Drought: a Systematic Review of the Evidence , 2013, PLoS currents.

[29]  Wei Guo,et al.  Global and regional drought dynamics in the climate warming era , 2013 .

[30]  Chong Wang,et al.  Stochastic variational inference , 2012, J. Mach. Learn. Res..

[31]  Joshua B. Tenenbaum,et al.  Structure Discovery in Nonparametric Regression through Compositional Kernel Search , 2013, ICML.

[32]  P. Kyle,et al.  Climate change effects on agriculture: Economic responses to biophysical shocks , 2013, Proceedings of the National Academy of Sciences.

[33]  B. Hurk,et al.  Forecast-based financing: an approach for catalyzing humanitarian action based on extreme weather and climate forecasts , 2014 .

[34]  Peter M. Atkinson,et al.  An effective approach for gap-filling continental scale remotely sensed time-series , 2014, ISPRS journal of photogrammetry and remote sensing : official publication of the International Society for Photogrammetry and Remote Sensing.

[35]  M. Verstraete,et al.  Early detection of biomass production deficit hot-spots in semi-arid environment using FAPAR time series and a probabilistic approach , 2014 .

[36]  J. Koenderink Q… , 2014, Les noms officiels des communes de Wallonie, de Bruxelles-Capitale et de la communaute germanophone.

[37]  Martha C. Anderson,et al.  Landsat-8: Science and Product Vision for Terrestrial Global Change Research , 2014 .

[38]  Molly E. Brown,et al.  Weather and international price shocks on food prices in the developing world , 2015 .

[39]  Arielle Tozier de la Poterie,et al.  From Yokohama to Sendai: Approaches to Participation in International Disaster Risk Reduction Frameworks , 2015, International Journal of Disaster Risk Science.

[40]  João Paulo Ramos Teixeira,et al.  Remote sensing of drought: Progress, challenges and opportunities , 2015 .

[41]  V. Mishra,et al.  Prediction of vegetation anomalies to improve food security and water management in India , 2015 .

[42]  N. Ramankutty,et al.  Influence of extreme weather disasters on global crop production , 2016, Nature.

[43]  G. Camps-Valls,et al.  A Survey on Gaussian Processes for Earth-Observation Data Analysis: A Comprehensive Investigation , 2016, IEEE Geoscience and Remote Sensing Magazine.

[44]  Qing Chang,et al.  Evaluating an Enhanced Vegetation Condition Index (VCI) Based on VIUPD for Drought Monitoring in the Continental United States , 2016, Remote. Sens..

[45]  Kees de Bie,et al.  Early assessment of seasonal forage availability for mitigating the impact of drought on East African pastoralists , 2016 .

[46]  Willem Waegeman,et al.  A non-linear Granger-causality framework to investigate climate–vegetation dynamics , 2016 .

[47]  Clement Atzberger,et al.  Operational Drought Monitoring in Kenya Using MODIS NDVI Time Series , 2016, Remote. Sens..

[48]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[49]  Q. Tong,et al.  Studying drought phenomena in the Continental United States in 2011 and 2012 using various drought indices , 2017 .

[50]  T. Tadesse,et al.  Prediction of drought-induced reduction of agricultural productivity in Chile from MODIS, rainfall estimates, and climate oscillation indices , 2018, Remote Sensing of Environment.

[51]  R. Moss,et al.  To co-produce or not to co-produce , 2018, Nature Sustainability.

[52]  A. Weerts,et al.  Towards impact-based flood forecasting and warning in Bangladesh: a case study at the local level in Sirajganj district , 2018 .

[53]  Wenjiang Huang,et al.  A Comparison of Hybrid Machine Learning Algorithms for the Retrieval of Wheat Biophysical Variables from Sentinel-2 , 2019, Remote. Sens..

[54]  Clement Atzberger,et al.  A Mixed Model Approach to Vegetation Condition Prediction Using Artificial Neural Networks (ANN): Case of Kenya's Operational Drought Monitoring , 2019, Remote. Sens..

[55]  H. V. Van Lanen,et al.  Moving from drought hazard to impact forecasts , 2019, Nature Communications.

[56]  J. Angerer,et al.  Predictive Livestock Early Warning System (PLEWS): Monitoring forage condition and implications for animal production in Kenya , 2020 .

[57]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[58]  Erin Coughlan de Perez,et al.  Bridging forecast verification and humanitarian decisions: A valuation approach for setting up action-oriented early warnings , 2020 .

[59]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.

[60]  P. Alam ‘K’ , 2021, Composites Engineering.

[61]  P. Alam ‘G’ , 2021, Composites Engineering: An A–Z Guide.

[62]  P. Alam ‘A’ , 2021, Composites Engineering: An A–Z Guide.

[63]  P. Alam ‘N’ , 2021, Composites Engineering: An A–Z Guide.