Weighted genomic distance can hardly impose a bound on the proportion of transpositions
暂无分享,去创建一个
[1] Richard Friedberg,et al. Efficient sorting of genomic permutations by translocation, inversion and block interchange , 2005, Bioinform..
[2] Enno Ohlebusch,et al. Sorting by Weighted Reversals, Transpositions, and Inverted Transpositions , 2006, RECOMB.
[3] Pavel A. Pevzner,et al. Transforming cabbage into turnip: polynomial algorithm for sorting signed permutations by reversals , 1995, JACM.
[4] David A. Christie,et al. Sorting Permutations by Block-Interchanges , 1996, Inf. Process. Lett..
[5] Guillaume Fertin,et al. Combinatorics of Genome Rearrangements , 2009, Computational molecular biology.
[6] A. J. Radcliffe,et al. Reversals and Transpositions Over Finite Alphabets , 2005 .
[7] Max A. Alekseyev,et al. Multi-Break Rearrangements and Breakpoint Re-Uses: From Circular to Linear Genomes , 2008, J. Comput. Biol..
[8] Pavel A. Pevzner,et al. Are There Rearrangement Hotspots in the Human Genome? , 2007, PLoS Comput. Biol..
[9] Niklas Eriksen. (1+epsilon)-Approximation of Sorting by Reversals and Transpositions , 2001, WABI.
[10] Pavel A. Pevzner,et al. Multi-break rearrangements and chromosomal evolution , 2008, Theor. Comput. Sci..
[11] Harald Reiterer. IDA: user interface design assistance , 1995, SGCH.
[12] Niklas Eriksen,et al. (1+epsilon)-Approximation of sorting by reversals and transpositions , 2001, Theor. Comput. Sci..
[13] Vineet Bafna,et al. Genome Rearrangements and Sorting by Reversals , 1996, SIAM J. Comput..
[14] D. Sankoff,et al. Parametric genome rearrangement. , 1996, Gene.
[15] Tzvika Hartman,et al. A 1.375-Approximation Algorithm for Sorting by Transpositions , 2005, IEEE/ACM Transactions on Computational Biology and Bioinformatics.
[16] Pavel A. Pevzner,et al. Transforming men into mice (polynomial algorithm for genomic distance problem) , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.