From Art to Engineering? The Rise of In Vivo Mammalian Electrophysiology via Genetically Targeted Labeling and Nonlinear Imaging

A convergence of technical advancements in neuroscience has begun to transform mammalian electrophysiology from an art into a precise practice.

[1]  R. Tsien,et al.  Circular permutation and receptor insertion within green fluorescent proteins. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[2]  T. Rülicke,et al.  Germ Line Transformation of Mammals by Pronuclear Microinjection , 2000, Experimental physiology.

[3]  W. Denk,et al.  Serial Block-Face Scanning Electron Microscopy to Reconstruct Three-Dimensional Tissue Nanostructure , 2004, PLoS biology.

[4]  E. Callaway A molecular and genetic arsenal for systems neuroscience , 2005, Trends in Neurosciences.

[5]  Takeharu Nagai,et al.  Functional Fluorescent Ca2+ Indicator Proteins in Transgenic Mice under TET Control , 2004, PLoS biology.

[6]  D. Kleinfeld,et al.  All-Optical Histology Using Ultrashort Laser Pulses , 2003, Neuron.

[7]  Oliver Griesbeck,et al.  Genetically Encoded Indicators of Cellular Calcium Dynamics Based on Troponin C and Green Fluorescent Protein* , 2004, Journal of Biological Chemistry.

[8]  G. Knott,et al.  Experience and Activity-Dependent Maturation of Perisomatic GABAergic Innervation in Primary Visual Cortex during a Postnatal Critical Period , 2004, The Journal of Neuroscience.

[9]  Priscilla Wu,et al.  Ankyrin-Based Subcellular Gradient of Neurofascin, an Immunoglobulin Family Protein, Directs GABAergic Innervation at Purkinje Axon Initial Segment , 2004, Cell.

[10]  L. Looger,et al.  Detection of glutamate release from neurons by genetically encoded surface-displayed FRET nanosensors. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Karel Svoboda,et al.  Monitoring Neural Activity and [Ca2+] with Genetically Encoded Ca2+ Indicators , 2004, The Journal of Neuroscience.

[12]  Gero Miesenböck,et al.  Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins , 1998, Nature.

[13]  K. Nakamura,et al.  Hypothalamic neuron involvement in integration of reward, aversion, and cue signals. , 1986, Journal of neurophysiology.

[14]  N. Heintz,et al.  Homologous recombination based modification in Esherichia coli and germline transmission in transgenic mice of a bacterial artificial chromsome , 1997, Nature Biotechnology.

[15]  Matt Wachowiak,et al.  In Vivo Imaging of Neuronal Activity by Targeted Expression of a Genetically Encoded Probe in the Mouse , 2004, Neuron.

[16]  Shiaoching Gong,et al.  A gene expression atlas of the central nervous system based on bacterial artificial chromosomes , 2003, Nature.

[17]  A Miyawaki,et al.  Dynamic and quantitative Ca2+ measurements using improved cameleons. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[18]  D. Kleinfeld,et al.  Adaptive Filtering of Vibrissa Input in Motor Cortex of Rat , 2002, Neuron.

[19]  M. Ohkura,et al.  A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein , 2001, Nature Biotechnology.

[20]  M. Ohkura,et al.  Activation of cerebellar parallel fibers monitored in transgenic mice expressing a fluorescent Ca2+ indicator protein , 2005, The European journal of neuroscience.

[21]  K. Svoboda,et al.  Photon Upmanship: Why Multiphoton Imaging Is More than a Gimmick , 1997, Neuron.

[22]  D. Kleinfeld,et al.  In vivo dendritic calcium dynamics in neocortical pyramidal neurons , 1997, Nature.

[23]  Walther Akemann,et al.  Transgenic mice expressing a pH and Cl– sensing yellow‐fluorescent protein under the control of a potassium channel promoter , 2002, The European journal of neuroscience.

[24]  E. Isacoff,et al.  Light-activated ion channels for remote control of neuronal firing , 2004, Nature Neuroscience.

[25]  M. J. Cormier,et al.  Primary structure of the Aequorea victoria green-fluorescent protein. , 1992, Gene.

[26]  A. Miyawaki,et al.  Expanded dynamic range of fluorescent indicators for Ca(2+) by circularly permuted yellow fluorescent proteins. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[27]  R Bermejo,et al.  Discriminative whisking in the head-fixed rat: optoelectronic monitoring during tactile detection and discrimination tasks. , 2001, Somatosensory & motor research.

[28]  I. Katona,et al.  In Vivo Labeling of Parvalbumin-Positive Interneurons and Analysis of Electrical Coupling in Identified Neurons , 2002, The Journal of Neuroscience.

[29]  Susana Q. Lima,et al.  Remote Control of Behavior through Genetically Targeted Photostimulation of Neurons , 2005, Cell.

[30]  William J Tyler,et al.  Synaptic vesicle recycling studied in transgenic mice expressing synaptopHluorin , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[31]  B. Zemelman,et al.  Selective Photostimulation of Genetically ChARGed Neurons , 2002, Neuron.

[32]  G. Feng,et al.  Imaging Neuronal Subsets in Transgenic Mice Expressing Multiple Spectral Variants of GFP , 2000, Neuron.

[33]  R. Tsien,et al.  green fluorescent protein , 2020, Catalysis from A to Z.

[34]  R. Tsien,et al.  Fluorescent indicators for Ca2+based on green fluorescent proteins and calmodulin , 1997, Nature.

[35]  A B Schwartz,et al.  Direct cortical representation of drawing. , 1994, Science.

[36]  Task-related Theta Activity from Intracranial Recordings During Virtual Maze Navigation , 1999 .

[37]  W. Denk,et al.  Two-photon imaging to a depth of 1000 microm in living brains by use of a Ti:Al2O3 regenerative amplifier. , 2003, Optics letters.

[38]  D. Tank,et al.  A Miniature Head-Mounted Two-Photon Microscope High-Resolution Brain Imaging in Freely Moving Animals , 2001, Neuron.

[39]  Michael A. Harvey, Roberto Bermejo, H. Philip Zeigler,et al.  Discriminative whisking in the head-fixed rat: optoelectronic monitoring during tactile detection and discrimination tasks , 2001 .

[40]  Jerome Mertz,et al.  Two-photon microscopy in brain tissue: parameters influencing the imaging depth , 2001, Journal of Neuroscience Methods.

[41]  K. Deisseroth,et al.  Millisecond-timescale, genetically targeted optical control of neural activity , 2005, Nature Neuroscience.

[42]  Joseph R. Madsen,et al.  Human theta oscillations exhibit task dependence during virtual maze navigation , 1999, Nature.

[43]  Anat Sakov,et al.  Genotype-environment interactions in mouse behavior: a way out of the problem. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[44]  D. Kleinfeld,et al.  Anatomical and functional imaging of neurons using 2-photon laser scanning microscopy , 1994, Journal of Neuroscience Methods.

[45]  Ehud Y Isacoff,et al.  A Genetically Encoded Optical Probe of Membrane Voltage , 1997, Neuron.

[46]  Hanns Ulrich Zeilhofer,et al.  Glycinergic neurons expressing enhanced green fluorescent protein in bacterial artificial chromosome transgenic mice , 2005, The Journal of comparative neurology.

[47]  Botond Roska,et al.  Tuning FlaSh: redesign of the dynamics, voltage range, and color of the genetically encoded optical sensor of membrane potential. , 2002, Biophysical journal.

[48]  Winfried Denk,et al.  Targeted Whole-Cell Recordings in the Mammalian Brain In Vivo , 2003, Neuron.

[49]  A Schnee,et al.  Rats are able to navigate in virtual environments , 2005, Journal of Experimental Biology.

[50]  R. Tsien,et al.  Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein , 2004, Nature Biotechnology.

[51]  H. Swadlow,et al.  Latency variability and the identification of antidromically activated neurons in mammalian brain , 1978, Experimental Brain Research.

[52]  Roger Y Tsien,et al.  Imagining imaging's future. , 2003, Nature reviews. Molecular cell biology.

[53]  M. Hatten,et al.  Large-scale genomic approaches to brain development and circuitry. , 2005, Annual review of neuroscience.

[54]  W. Webb,et al.  Nonlinear magic: multiphoton microscopy in the biosciences , 2003, Nature Biotechnology.

[55]  R. Tsien,et al.  Reducing the Environmental Sensitivity of Yellow Fluorescent Protein , 2001, The Journal of Biological Chemistry.