Linear-time algorithms for max flow and multiple-source shortest paths in unit-weight planar graphs

We give simple linear-time algorithms for two problems in planar graphs: max st-flow in directed graphs with unit capacities, and multiple-source shortest paths in undirected graphs with unit lengths.

[1]  Christian Wulff-Nilsen,et al.  Shortest Paths in Planar Graphs with Real Lengths in O(nlog2n/loglogn) Time , 2009, ESA.

[2]  Philip N. Klein,et al.  Faster Shortest-Path Algorithms for Planar Graphs , 1997, J. Comput. Syst. Sci..

[3]  Hsueh-I Lu,et al.  Computing the Girth of a Planar Graph in Linear Time , 2011, COCOON.

[4]  Refael Hassin,et al.  Maximum Flow in (s, t) Planar Networks , 1981, Inf. Process. Lett..

[5]  Piotr Sankowski,et al.  Single Source -- All Sinks Max Flows in Planar Digraphs , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[6]  Philip N. Klein,et al.  Shortest paths in directed planar graphs with negative lengths: A linear-space O(n log2 n)-time algorithm , 2010, TALG.

[7]  Glencora Borradaile,et al.  Polynomial-Time Approximation Schemes for Subset-Connectivity Problems in Bounded-Genus Graphs , 2012, Algorithmica.

[8]  Karsten Weihe,et al.  The vertex-disjoint menger problem in planar graphs , 1997, SODA '93.

[9]  Erin W. Chambers,et al.  Multiple source shortest paths in a genus g graph , 2007, SODA '07.

[10]  Greg N. Frederickson,et al.  Fast Algorithms for Shortest Paths in Planar Graphs, with Applications , 1987, SIAM J. Comput..

[11]  Robert E. Tarjan,et al.  A Linear-Time Algorithm for a Special Case of Disjoint Set Union , 1985, J. Comput. Syst. Sci..

[12]  Sergio Cabello,et al.  Many Distances in Planar Graphs , 2006, SODA '06.

[13]  Alexander Schrijver,et al.  On the history of the transportation and maximum flow problems , 2002, Math. Program..

[15]  Philip N. Klein,et al.  Multiple-Source Multiple-Sink Maximum Flow in Directed Planar Graphs in Near-Linear Time , 2011, FOCS.

[16]  David Eisenstat,et al.  An efficient polynomial-time approximation scheme for Steiner forest in planar graphs , 2012, SODA.

[17]  Philip N. Klein,et al.  A Subset Spanner for Planar Graphs, with Application to Subset Tsp , 2022 .

[18]  Philip N. Klein,et al.  Multiple-source shortest paths in planar graphs , 2005, SODA '05.

[19]  Philip N. Klein,et al.  Multiple-Source Single-Sink Maximum Flow in Directed Planar Graphs in O(diameter · n log n) Time , 2011, WADS.

[20]  Christian Sommer,et al.  Exact distance oracles for planar graphs , 2010, SODA.

[21]  Philip N. Klein,et al.  An O (n log n) algorithm for maximum st-flow in a directed planar graph , 2006, SODA '06.

[22]  Erin W. Chambers,et al.  Homology flows, cohomology cuts , 2009, STOC '09.

[23]  Erin W. Chambers,et al.  Multiple-Source Shortest Paths in Embedded Graphs , 2012, SIAM J. Comput..

[24]  Daniel Cremers,et al.  Efficient planar graph cuts with applications in Computer Vision , 2009, CVPR.

[25]  Philip N. Klein,et al.  A polynomial-time approximation scheme for Steiner tree in planar graphs , 2007, SODA '07.

[26]  Satish Rao,et al.  Planar graphs, negative weight edges, shortest paths, and near linear time , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[27]  Piotr Sankowski,et al.  Improved algorithms for min cut and max flow in undirected planar graphs , 2011, STOC '11.

[28]  Robert E. Tarjan,et al.  A linear-time algorithm for a special case of disjoint set union , 1983, J. Comput. Syst. Sci..

[29]  Amir Nayyeri,et al.  Computing replacement paths in surface embedded graphs , 2011, SODA '11.

[30]  Ulrik Brandes,et al.  A Linear Time Algorithm for the Arc Disjoint Menger Problem in Planar Directed Graphs , 2000, Algorithmica.

[31]  Philip N. Klein,et al.  The Two-Edge Connectivity Survivable Network Problem in Planar Graphs , 2008, ICALP.

[32]  Karsten Weihe,et al.  Edge-Disjoint (s, t)-Paths in Undirected Planar Graphs in Linear Time , 1997, J. Algorithms.

[33]  Ken-ichi Kawarabayashi,et al.  Linear-Space Approximate Distance Oracles for Planar, Bounded-Genus and Minor-Free Graphs , 2011, ICALP.

[34]  Haim Kaplan,et al.  Maximum Flow in Directed Planar Graphs with Vertex Capacities , 2009, ESA.

[35]  Jeff Erickson,et al.  Maximum flows and parametric shortest paths in planar graphs , 2010, SODA '10.

[36]  Christian Wulff-Nilsen,et al.  Solving the replacement paths problem for planar directed graphs in O(n log n) time , 2010, SODA '10.