Further result about dynamic coupling for nonlinear output agreement

In recent work we have explored the role of dynamic coupling, as opposed to static coupling, in achieving output agreement in networks of nonlinear incrementally passive systems in the presence of exogenous disturbances. In this paper, we further investigate the problem for relaxed cocoercive and for contractive systems. We also study dynamic controllers that are able to restore the convergence of the network system to a synchronous solution of the system without disturbances.

[1]  Winfried Stefan Lohmiller,et al.  Contraction analysis of nonlinear systems , 1999 .

[2]  David Angeli,et al.  A Lyapunov approach to incremental stability properties , 2002, IEEE Trans. Autom. Control..

[3]  Rodolphe Sepulchre,et al.  Analysis of Interconnected Oscillators by Dissipativity Theory , 2007, IEEE Transactions on Automatic Control.

[4]  Arjan van der Schaft,et al.  Port-Hamiltonian Systems on Graphs , 2011, SIAM J. Control. Optim..

[5]  Francesco Bullo,et al.  Synchronization and power sharing for droop-controlled inverters in islanded microgrids , 2012, Autom..

[6]  Murat Arcak,et al.  Certifying spatially uniform behavior in reaction-diffusion PDE and compartmental ODE systems , 2011, Autom..

[7]  Franco Blanchini,et al.  Robust control strategies for multi-inventory systems with average flow constraints , 2006, Autom..

[8]  Claudio De Persis,et al.  On the Internal Model Principle in the Coordination of Nonlinear Systems , 2014, IEEE Transactions on Control of Network Systems.

[9]  Nathan van de Wouw,et al.  Convergent dynamics, a tribute to Boris Pavlovich Demidovich , 2004, Syst. Control. Lett..

[10]  Rodolphe Sepulchre,et al.  A Differential Lyapunov Framework for Contraction Analysis , 2012, IEEE Transactions on Automatic Control.

[11]  Claudio De Persis,et al.  Coordination of Passive Systems under Quantized Measurements , 2011, SIAM J. Control. Optim..

[12]  Claudio De Persis,et al.  Internal Models for Nonlinear Output Agreement and Optimal Flow Control , 2013, NOLCOS.

[13]  Frank Allgöwer,et al.  Hierarchical Clustering of Dynamical Networks Using a Saddle-Point Analysis , 2013, IEEE Transactions on Automatic Control.

[14]  Claudio De Persis,et al.  Balancing time-varying demand-supply in distribution networks: An internal model approach , 2013, 2013 European Control Conference (ECC).

[15]  Yoshito Ohta,et al.  Perspectives in Mathematical System Theory, Control, and Signal Processing , 2010 .

[16]  Jean-Jacques E. Slotine,et al.  On partial contraction analysis for coupled nonlinear oscillators , 2004, Biological Cybernetics.

[17]  Mario di Bernardo,et al.  Novel decentralized adaptive strategies for the synchronization of complex networks , 2009, Autom..

[18]  Rodolphe Sepulchre,et al.  Synchronization in networks of identical linear systems , 2008, 2008 47th IEEE Conference on Decision and Control.

[19]  Arjan van der Schaft,et al.  A Hamiltonian perspective on the control of dynamical distribution networks , 2012 .

[20]  Arjan van der Schaft,et al.  On differential passivity of physical systems , 2013, 52nd IEEE Conference on Decision and Control.

[21]  N. Wouw,et al.  Uniform Output Regulation of Nonlinear Systems: A Convergent Dynamics Approach , 2005 .

[22]  Frank Allgöwer,et al.  Duality and network theory in passivity-based cooperative control , 2013, Autom..

[23]  Bayu Jayawardhana,et al.  On transverse exponential stability and its use in incremental stability, observer and synchronization , 2013, 52nd IEEE Conference on Decision and Control.

[24]  Jean-Jacques E. Slotine,et al.  On Contraction Analysis for Non-linear Systems , 1998, Autom..

[25]  Claudio De Persis,et al.  Dynamic coupling design for nonlinear output agreement and time-varying flow control , 2013, Autom..

[26]  He Bai,et al.  Output Synchronization of Nonlinear Systems under Input Disturbances , 2013, ArXiv.

[27]  John T. Wen,et al.  Cooperative Control Design - A Systematic, Passivity-Based Approach , 2011, Communications and control engineering.

[28]  Murat Arcak,et al.  Passivity as a Design Tool for Group Coordination , 2007, IEEE Transactions on Automatic Control.

[29]  Rodolphe Sepulchre,et al.  Synchronization in networks of identical linear systems , 2009, Autom..

[30]  Alessio Franci,et al.  Existence and robustness of phase-locking in coupled Kuramoto oscillators under mean-field feedback , 2011, Autom..

[31]  Eduardo D. Sontag,et al.  Synchronization of Interconnected Systems With Applications to Biochemical Networks: An Input-Output Approach , 2009, IEEE Transactions on Automatic Control.

[32]  BürgerMathias,et al.  An internal model approach to (optimal) frequency regulation in power grids with time-varying voltages , 2016 .

[33]  Pogromskiy Cooperative oscillatory behavior of mutually coupled dynamical systems , 2005 .