Planar ion trap geometry for microfabrication

We describe a novel high aspect ratio radiofrequency linear ion trap geometry that is amenable to modern microfabrication techniques. The ion trap electrode structure consists of a pair of stacked conducting cantilevers resulting in confining fields that take the form of fringe fields from parallel plate capacitors. The confining potentials are modeled both analytically and numerically. This ion trap geometry may form the basis for large scale quantum computers or parallel quadrupole mass spectrometers.

[1]  M. A. Rowe,et al.  Heating of trapped ions from the quantum ground state , 2000 .

[2]  Herbert Walther,et al.  Quantum optics: The atomic nanoscope , 2001, Nature.

[3]  Wineland,et al.  Ionic crystals in a linear Paul trap. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[4]  C. Monroe,et al.  Experimental Issues in Coherent Quantum-State Manipulation of Trapped Atomic Ions , 1997, Journal of research of the National Institute of Standards and Technology.

[5]  T. J. Tate,et al.  Design of a microengineered electrostatic quadrupole lens , 1998 .

[6]  M. Roukes,et al.  Thermoelastic damping in micro- and nanomechanical systems , 1999, cond-mat/9909271.

[7]  M. Wilkens,et al.  Loss and heating of particles in small and noisy traps , 1999, quant-ph/9906128.

[8]  D Leibfried,et al.  Coupling a single atomic quantum bit to a high finesse optical cavity. , 2002, Physical review letters.

[9]  P. Maunz,et al.  Trapping an atom with single photons , 2000, Nature.

[10]  H. Dehmelt,et al.  Radiofrequency Spectroscopy of Stored Ions I: Storage , 1968 .

[11]  J. K. Srivastava,et al.  Electrical breakdown voltage characteristics of buried silicon nitride layers and their correlation to defects in the nitride layer , 1990 .

[12]  P. Hansma,et al.  A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy , 1993 .

[13]  S. Griffis EDITOR , 1997, Journal of Navigation.

[14]  S. Lau,et al.  Characterization of (Ti, Al)N films deposited by off-plane double bend filtered cathodic vacuum arc , 2001 .

[15]  H. Dehmelt Radiofrequency Spectroscopy of Stored Ions II: Spectroscopy , 1969 .

[16]  Robert M Corless,et al.  Some applications of the Lambert W  function to physics , 2000, Canadian Journal of Physics.

[17]  Andrew M. Steane The ion trap quantum information processor , 1996 .

[18]  C. Monroe,et al.  Quantum dynamics of single trapped ions , 2003 .

[19]  C. Monroe,et al.  Architecture for a large-scale ion-trap quantum computer , 2002, Nature.

[20]  W. Paul Electromagnetic traps for charged and neutral particles , 1990 .

[21]  J. Schmiedmayer,et al.  Microscopic atom optics: from wires to an atom chip , 2008, 0805.2613.

[22]  F. Witteborn,et al.  Apparatus for measuring the force of gravity on freely falling electrons , 1977 .

[23]  Van Dyck,et al.  New high-precision comparison of electron and positron g factors. , 1987, Physical review letters.

[24]  H. J. Kimble,et al.  Trapping of Single Atoms in Cavity QED , 1999 .

[25]  R. Syms,et al.  Silicon based quadrupole mass spectrometry using microelectromechanical systems , 2001 .

[26]  P.T.H. Fisk,et al.  Trapped-ion and trapped-atom microwave frequency standards , 1997 .