Low Resolution Sparse Binary Face Patterns

Automated recognition of low resolution face images from thumbnails represent a challenging image recognition problem. We propose the sequential fusion of wavelet transform computation, local binary pattern and sparse coding of images to accurately extract facial features from thumbnail images. A minimum distance classifier with Shepard’s similarity measure is used as the classifier. The proposed method shows robust recognition performance when tested on face datasets (Yale B, AR and PUT) when compared against benchmark techniques for very low resolution (i.e. less than 45x45 pixels) face image recognition. The possible applications of the proposed thumbnail recognition include contextual search, intelligent image/video sorting and groups, and face image clustering.

[1]  Alex Pappachen James,et al.  Sparse distributed localized gradient fused features of objects , 2014, Pattern Recognit..

[2]  Aleix M. Martinez,et al.  The AR face database , 1998 .

[3]  S. Mallat A wavelet tour of signal processing , 1998 .

[4]  William T. Freeman,et al.  Learning low-level vision , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[5]  Radoslaw Weychan,et al.  Face Recognition from Low Resolution Images , 2012, MCSS.

[6]  Peter E. Hart,et al.  Nearest neighbor pattern classification , 1967, IEEE Trans. Inf. Theory.

[7]  Pong C. Yuen,et al.  Very low resolution face recognition problem , 2010, 2010 Fourth IEEE International Conference on Biometrics: Theory, Applications and Systems (BTAS).

[8]  Alex Pentland,et al.  Face recognition using eigenfaces , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[9]  David J. Field,et al.  Wavelets, vision and the statistics of natural scenes , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[10]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Adam Schmidt,et al.  The put face database , 2008 .

[12]  Shiguang Shan,et al.  Low-Resolution Face Recognition via Coupled Locality Preserving Mappings , 2010, IEEE Signal Processing Letters.

[13]  Matti Pietikäinen,et al.  Face Description with Local Binary Patterns: Application to Face Recognition , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Rama Chellappa,et al.  Dictionaries for image and video-based face recognition [Invited]. , 2014, Journal of the Optical Society of America. A, Optics, image science, and vision.

[15]  R. Shepard,et al.  Toward a universal law of generalization for psychological science. , 1987, Science.

[16]  Shuzhi Sam Ge,et al.  Face recognition by applying wavelet subband representation and kernel associative memory , 2004, IEEE Transactions on Neural Networks.

[17]  Takeo Kanade,et al.  Hallucinating faces , 2000, Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580).

[18]  K. Kim,et al.  Face recognition using kernel principal component analysis , 2002, IEEE Signal Process. Lett..

[19]  Wanquan Liu,et al.  Low Resolution Face Recognition in Surveillance Systems , 2014 .

[20]  Xudong Jiang,et al.  Modular Weighted Global Sparse Representation for Robust Face Recognition , 2012, IEEE Signal Processing Letters.

[21]  Matti Pietikäinen,et al.  Local Binary Patterns , 2010, Scholarpedia.

[22]  Qingshan Liu,et al.  Face recognition using kernel based fisher discriminant analysis , 2002, Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition.

[23]  David J. Kriegman,et al.  Acquiring linear subspaces for face recognition under variable lighting , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Ruqiang Yan,et al.  Wavelets: Theory and Applications for Manufacturing , 2010 .