The "exterior approach" to solve the inverse obstacle problem for the Stokes system
暂无分享,去创建一个
[1] H. Brezis. Analyse fonctionnelle : théorie et applications , 1983 .
[2] Jaime H. Ortega,et al. Identification of immersed obstacles via boundary measurements , 2005 .
[3] Jérémi Dardé,et al. A quasi-reversibility approach to solve the inverse obstacle problem , 2010 .
[4] Michael V. Klibanov,et al. A computational quasi-reversiblility method for Cauchy problems for Laplace's equation , 1991 .
[5] C. Fabre,et al. Prolongement Unique Des Solutions , 1996 .
[6] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.
[7] Antoine Henrot,et al. Variation et optimisation de formes : une analyse géométrique , 2005 .
[8] On the identification of a rigid body immersed in a fluid: A numerical approach , 2008 .
[9] J. Lions,et al. Les inéquations en mécanique et en physique , 1973 .
[10] STABLE DETERMINATION OF A BOUNDARY COEFFICIENT IN AN ELLIPTIC EQUATION , 2008 .
[11] J. Dardé. The ‘exterior approach’: a new framework to solve inverse obstacle problems , 2011 .
[12] Robert Lattès,et al. Méthode de quasi-réversibilbilité et applications , 1967 .
[13] Laurent Bourgeois,et al. A mixed formulation of quasi-reversibility to solve the Cauchy problem for Laplace's equation , 2005 .
[14] Antti Hannukainen,et al. An $H_\mathsf{div}$-Based Mixed Quasi-reversibility Method for Solving Elliptic Cauchy Problems , 2013, SIAM J. Numer. Anal..
[15] Jenn-Nan Wang,et al. Optimal three-ball inequalities and quantitative uniqueness for the Stokes system , 2008, 0812.3730.
[16] Fabien Caubet,et al. Localization of small obstacles in Stokes flow , 2012 .
[17] Jérémi Dardé,et al. A duality-based method of quasi-reversibility to solve the Cauchy problem in the presence of noisy data , 2010 .
[18] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[19] S. Osher,et al. Algorithms Based on Hamilton-Jacobi Formulations , 1988 .
[20] A. L. BUKHGEIM. Extension of Solutions of elliptic equations from discrete sets , 1993 .
[21] Jaime H. Ortega,et al. On the detection of a moving obstacle in an ideal fluid by a boundary measurement , 2008 .
[22] Amel Ben Abda,et al. Data completion for the Stokes system , 2009 .
[23] P. Raviart,et al. Finite Element Approximation of the Navier-Stokes Equations , 1979 .
[24] Nuno F. M. Martins,et al. An iterative MFS approach for the detection of immersed obstacles , 2008 .
[25] C. Grandmont,et al. Stability estimates for a Robin coefficient in the two-dimensional Stokes system , 2012, 1202.1263.
[26] Fabien Caubet,et al. A Kohn-Vogelius formulation to detect an obstacle immersed in a fluid , 2013 .
[27] L. Bourgeois,et al. About identification of defects in an elastic-plastic medium from boundary measurements in the antiplane case , 2011 .
[28] Fabien Caubet,et al. DETECTING AN OBSTACLE IMMERSED IN A FLUID BY SHAPE OPTIMIZATION METHODS , 2011 .
[29] Wang Ming,et al. The Morley element for fourth order elliptic equations in any dimensions , 2006, Numerische Mathematik.
[30] J. Sethian,et al. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .
[31] R. Temam,et al. Analyse convexe et problèmes variationnels , 1974 .
[32] C. Conca,et al. On the identifiability of a rigid body moving in a stationary viscous fluid , 2011 .
[33] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[34] A. Ballerini. Stable determination of an immersed body in a stationary Stokes fluid , 2010, 1003.0301.
[35] A. Ben Abda,et al. Topological Sensitivity Analysis for the Location of Small Cavities in Stokes Flow , 2009, SIAM J. Control. Optim..
[36] Detection of a moving rigid solid in a perfect fluid , 2010, 1007.0234.