General Morphisms of Petri Nets (Extended Abstract)

A new notion of a general morphism of Petri nets is introduced. The new morphisms are shown to properly include the morphisms considered so far. The resulting category of Petri nets is shown to admit products. Potential applications of general morphisms are indicated.

[1]  José Meseguer,et al.  Petri Nets Are Monoids , 1990, Inf. Comput..

[2]  Rémi Morin,et al.  Decompositions of Asynchronous Systems , 1998, CONCUR.

[3]  Glynn Winskel,et al.  Petri Nets, Algebras, Morphisms, and Compositionality , 1987, Inf. Comput..

[4]  C. A. Petri Fundamentals of a Theory of Asynchronous Information Flow , 1962, IFIP Congress.

[5]  Marek A. Bednarczyk,et al.  Concurrent Realizations of Reactive Systems , 1999, CTCS.

[6]  Philippe Darondeau,et al.  Theory of Regions , 1996, Petri Nets.

[7]  Christine Duboc,et al.  Mixed Product and Asynchronous Automata , 1986, Theor. Comput. Sci..

[8]  Marek Antoni Bednarczyk,et al.  Categories of asynchronous systems , 1987 .

[9]  Glynn Winskel,et al.  A category of labelled Petri nets and compositional proof system , 1988, [1988] Proceedings. Third Annual Information Symposium on Logic in Computer Science.

[10]  Carolyn Brown,et al.  Refinement and Simulation of Nets - A Categorical Characterisation , 1992, Application and Theory of Petri Nets.

[11]  Wieslaw Zielonka,et al.  Notes on Finite Asynchronous Automata , 1987, RAIRO Theor. Informatics Appl..

[12]  Grzegorz Rozenberg,et al.  Elementary Transition Systems , 1990, Theor. Comput. Sci..

[13]  Marek A. Bednarczyk,et al.  General morphisms of Petri nets , 1999 .