Predicting Gas Emission Based on Combination of Grey Relational Analysis and Improved Fuzzy Neural Network

Gas emission is controlled by various factors; it is a very complex problem how to predict gas emission according to these factors. When by using geological information and winning technical data to predict it, there are lots of uncertainty, ambiguity and highly nonlinear characteristics. This feature is difficult using traditional mathematical expressions to describe. This paper combines grey relational analysis with improved fuzzy neural network (IFNN) to predict gas emission. Based on grey relational degree these gas emission-sensitive factors are optimality collected. Take these factors as input of IFNN model, the prediction model of gas emission is established. Results show that it is reliable. Recognition precision is high, and practicability is better.