Dissipation of the excitation wave fronts.

An excitation wave in cardiac tissue will fail to propagate if the transmembrane voltage at its front rises too slowly and does not excite the tissue ahead of it. Then the sharp voltage profile of the front will dissipate, and the subsequent spread of voltage will be purely diffusive. This mechanism is impossible in FitzHugh-Nagumo type systems. Here a simplified mathematical model for this mechanism is suggested. The model has exact traveling front solutions, and gives conditions for the front dissipation. In particular, a front will dissipate if it is not allowed to propagate faster than a certain nonzero speed. This critical speed depends only on the properties of the fast sodium current.