Global existence for the Vlasov–Darwin system in ℝ3 for small initial data

We prove the global existence of weak solutions to the Vlasov–Darwin system in R3 for small initial data. The Vlasov–Darwin system is an approximation of the Vlasov–Maxwell model which is valid when the characteristic speed of the particles is smaller than the light velocity, but not too small. In contrast to the Vlasov–Maxwell system, the total energy conservation does not provide an L2-bound on the transverse part of the electric field. This difficulty may be overcome by exploiting the underlying elliptic structure of the Darwin equations under a smallness assumption on the initial data. We finally investigate the convergence of the Vlasov–Darwin system towards the Vlasov–Poisson system. Copyright © 2003 John Wiley & Sons, Ltd.

[1]  Jeffery Cooper,et al.  Boundary value problems for the Vlasov-Maxwell equation in one dimension , 1980 .

[2]  K. Asano On local solutions of the initial value problem for the Vlasov-Maxwell equation , 1986 .

[3]  Pierre Degond,et al.  An analysis of the Darwin model of approximation to Maxwell’s equations , 1992 .

[4]  H. Neunzert,et al.  Local existence of solutions of the vlasov‐maxwell equations and convergence to the vlasov‐poisson equations for infinite light velocity , 1986 .

[5]  Jack Schaeffer,et al.  Global existence of smooth solutions to the vlasov poisson system in three dimensions , 1991 .

[6]  Pierre-Louis Lions,et al.  Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system , 1991 .

[7]  Jack Schaeffer,et al.  On the ‘one and one‐half dimensional’ relativistic Vlasov–Maxwell system , 1990 .

[8]  Jack Schaeffer,et al.  The “Two and One–Half Dimensional” Relativistic Vlasov Maxwell System , 1997 .

[9]  P. Lions,et al.  Global weak solutions of Vlasov‐Maxwell systems , 1989 .

[10]  John Ambrosiano,et al.  A finite element formulation of the Darwin PIC model for use on unstructured grids , 1995 .

[11]  M. Gibbons,et al.  The Darwin Direct Implicit Particle-in-Cell (DADIPIC) Method for Simulation of Low Frequency Plasma Phenomena , 1995 .

[12]  R. Robert Unicité de la solution faible à support compact de l’équation de Vlasov-Poisson , 1997 .

[13]  P. Raviart,et al.  A hierarchy of approximate models for the Maxwell equations , 1996 .

[14]  Pierre Degond,et al.  Global existence for the Vlasov-Poisson equation in 3 space variables with small initial data , 1985 .

[15]  H. Neunzert,et al.  On the classical solutions of the initial value problem for the unmodified non‐linear Vlasov equation I general theory , 1981 .

[16]  K. Pfaffelmoser,et al.  Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data , 1992 .