Midcourse Space Experiment Spectra of the Orion Nebula and the Implications for Abundances in the Interstellar Medium

Spectra of the Orion Nebula were obtained with the Midcourse Space Experiment Spirit III interferometer from 370 to 2000 cm-1 with 2 cm-1 resolution in a 6' × 9' field of view (FOV) in 1996 November. Lines were detected of [S III] 534.4 cm-1, [Ne III] 642.9 cm-1, [Ne II] 780.4 cm-1, [S IV] 951.4 cm-1, [Ar III] 1112.2 cm-1, [Ar II] 1431.6 cm-1, H (7-6) 808.3 cm-1, H (8-6) 1332.9 cm-1, H (6-5) 1340.5 cm-1, H2(S1) 587.0 cm-1, H2(S2) 814.4 cm-1, H2(S3) 1034.7 cm-1, H2(S4) 1246.1 cm-1, and H2(S5) 1447.3 cm-1. The following abundances were determined from these lines: Ne/H = 9.9 ± 1.1 × 10-5, S/H = 8.1 ± 1.1 × 10-6, and Ar/H = 2.5 ± 0.2 × 10-6. These abundances are all less than solar and confirm that the Sun is overabundant in heavy elements without the need for correction for the composition of interstellar dust. The low sulfur abundance compared with solar is an indication that a significant amount of the sulfur in Orion is in dust grains. The FOV-averaged molecular hydrogen column density is ~1.6 × 1020 cm-2 for an excitation temperature of ~670 K and an extinction correction corresponding to an optical depth of 1.5 at 9.7 μm. The unidentified infrared emission features at 6.2, 7.7, 8.6, 11.3, and 12.7 μm, attributable to polycyclic aromatic hydrocarbons, were also detected. A prominent, broad silicate feature centered near 18 μm and additional weak features were detected and are discussed.

[1]  C. Esteban,et al.  Chemical composition of the Orion nebula derived from echelle spectrophotometry , 1998 .

[2]  Martin G. Cohen,et al.  A Population of Cold Cores in the Galactic Plane , 1998 .

[3]  K. Widing Emerging Active Regions on the Sun and the Photospheric Abundance of Neon , 1997 .

[4]  J. Mathis Dust Models with Tight Abundance Constraints , 1996 .

[5]  H. Kataza,et al.  Fabry-Perot Imaging of H 2 1--0 S(1), 2--1 S(1), and Brackett-Gamma Emission in the Orion Nebula , 1996 .

[6]  M. R. Haas,et al.  Far-infrared lines from H II regions: Abundance variations in the galaxy , 1995 .

[7]  D. Hudgins,et al.  Infrared spectroscopy of matrix-isolated polycyclic aromatic hydrocarbon cations. 2. The members of the thermodynamically most favorable series through coronene. , 1995, The Journal of physical chemistry.

[8]  J. Miles,et al.  Thermal infrared imaging of subarcsecond structure in the trapezium nebula , 1994 .

[9]  O. Manuel Uy,et al.  Midcourse Space Experiment: Introduction to the Spacecraft, Instruments, and Scientific Objectives , 1994 .

[10]  J. Lacy,et al.  Shocked pure-rotational emission from H2 in Orion , 1994 .

[11]  K. Cunha,et al.  Chemical evolution of the Orion association. II. The carbon, nitrogen, oxygen, silicon, and iron abundances of main-sequence B stars , 1994 .

[12]  R. Rubin,et al.  Silicon and carbon abundances in the Orion nebula , 1993 .

[13]  S. Veilleux,et al.  Faint emission lines in the spectrum of the Orion Nebula and the abundances of some of the rarer elements , 1992 .

[14]  T. Wilson,et al.  Abundances in the interstellar medium , 1992 .

[15]  D. Smits Theoretical He I line intensities in low-density plasmas , 1991 .

[16]  M. R. Haas,et al.  Axisymmetric model of the ionized gas in the Orion Nebula , 1991 .

[17]  J. Baldwin,et al.  Physical conditions in the Orion Nebula and an assessment of its helium abundance , 1991 .

[18]  J. Lacy,et al.  Detection of low-J pure-rotational emission from H2 in the Orion Bar region - Evidence for small-scale clumpiness , 1991 .

[19]  R. Rubin,et al.  IRAS Low-Resolution Spectral Observations of H II Regions , 1990 .

[20]  A. Tielens,et al.  Interstellar polycyclic aromatic hydrocarbons: the infrared emission bands, the excitation/emission mechanism, and the astrophysical implications. , 1989, The Astrophysical journal. Supplement series.

[21]  A. Tielens,et al.  The infrared emission bands. II. A spatial and spectral study of the Orion Bar. , 1989, The Astrophysical journal.

[22]  L. Allamandola,et al.  The infrared emission bands. III. Southern IRAS sources. , 1989, The Astrophysical journal.

[23]  S. Sandford,et al.  New emission features in the 11-13 micron region and their relationship to polycyclic aromatic hydrocarbons. , 1989, The Astrophysical journal.

[24]  J. Stutzki,et al.  The Orion Molecular Cloud and Star-Forming Region , 1988 .

[25]  A. Tielens,et al.  Anharmonicity and the interstellar polycyclic aromatic hydrocarbon infrared emission spectrum , 1987 .

[26]  C. Johnson,et al.  Atomic data for the S IV 10.5-μm fine-structure transition , 1986 .

[27]  A. Tielens,et al.  The infrared emission bands. I - Correlation studies and the dependence on C/O ratio. [in planetary and reflection nebulae and H II regions] , 1986 .

[28]  H. M. Lee,et al.  Optical properties of interstellar graphite and silicate grains , 1984 .

[29]  P. Roche,et al.  8–13 μm spectrophotometry of compact planetary nebulae and emission line objects , 1982 .

[30]  David A. Williams,et al.  The infrared spectrum of interstellar dust: Surface functional groups on carbon , 1981 .

[31]  M. Peimbert,et al.  Chemical composition of the Orion Nebula. , 1977 .

[32]  D. G. Hummer,et al.  Recombination line intensities for hydrogenic ions-IV. Total recombination coefficients and machine-readable tables for Z=1 to 8 , 1995 .

[33]  D. Hudgins,et al.  Infrared spectroscopy of matrix-isolated polycyclic aromatic hydrocarbon cations. 3. The polyacenes anthracene, tetracene, and pentacene. , 2013, The Journal of physical chemistry.

[34]  D. Osterbrock,et al.  Astrophysics of Gaseous Nebulae and Active Galactic Nuclei , 1989 .

[35]  A. Dalgarno,et al.  The Quadrupole Vibration-Rotation Transition Probabilities of Molecular Hydrogen , 1977 .