DNA-capped mesoporous silica nanoparticles as an ion-responsive release system to determine the presence of mercury in aqueous solutions.

We have developed DNA-functionalized silica nanoparticles for the rapid, sensitive, and selective detection of mercuric ion (Hg(2+)) in aqueous solution. Two DNA strands were designed to cap the pore of dye-trapped silica nanoparticles. In the presence of ppb level Hg(2+), the two DNA strands are dehybridized to uncap the pore, releasing the dye cargo with detectable enhancements of fluorescence signal. This method enables rapid (less than 20 min) and sensitive (limit of detection, LOD, 4 ppb) detection, and it was also able to discriminate Hg(2+) from twelve other environmentally relevant metal ions. The superior properties of the as-designed DNA-functionalized silica nanoparticles can be attributed to the large loading capacity and highly ordered pore structure of mesoporous silica nanoparticles, as well as the selective binding of thymine-rich DNA with Hg(2+) . Our design serves as a new prototype for metal-ion sensing systems, and it also has promising potential for detection of various targets in stimulus-release systems.

[1]  Chulhee Kim,et al.  Photoresponsive cyclodextrin-covered nanocontainers and their sol-gel transition induced by molecular recognition. , 2009, Angewandte Chemie.

[2]  Johann Kecht,et al.  A programmable DNA-based molecular valve for colloidal mesoporous silica. , 2010, Angewandte Chemie.

[3]  X. Qu,et al.  Stimuli-responsive controlled-release system using quadruplex DNA-capped silica nanocontainers , 2010, Nucleic acids research.

[4]  V. S. Lin,et al.  Mesoporous silica nanoparticle-based double drug delivery system for glucose-responsive controlled release of insulin and cyclic AMP. , 2009, Journal of the American Chemical Society.

[5]  R. Martínez‐Máñez,et al.  Controlled delivery using oligonucleotide-capped mesoporous silica nanoparticles. , 2010, Angewandte Chemie.

[6]  Chih-Ching Huang,et al.  Oligonucleotide-based fluorescence probe for sensitive and selective detection of mercury(II) in aqueous solution. , 2008, Analytical chemistry.

[7]  Chun-hua Lu,et al.  Bioresponsive controlled release using mesoporous silica nanoparticles capped with aptamer-based molecular gate. , 2011, Journal of the American Chemical Society.

[8]  Xiaogang Liu,et al.  One-step, room temperature, colorimetric detection of mercury (Hg2+) using DNA/nanoparticle conjugates. , 2008, Journal of the American Chemical Society.

[9]  C. Mou,et al.  Intracellular pH-responsive mesoporous silica nanoparticles for the controlled release of anticancer chemotherapeutics. , 2010, Angewandte Chemie.

[10]  Chad A Mirkin,et al.  Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. , 2007, Angewandte Chemie.

[11]  J. Fraser Stoddart,et al.  Noninvasive remote-controlled release of drug molecules in vitro using magnetic actuation of mechanized nanoparticles. , 2010, Journal of the American Chemical Society.

[12]  Peter Oefner,et al.  BIOANALYSIS , 2008, Electrophoresis.

[13]  E. Wang,et al.  Label-free colorimetric detection of aqueous mercury ion (Hg2+) using Hg2+-modulated G-quadruplex-based DNAzymes. , 2009, Analytical chemistry.

[14]  Weihong Tan,et al.  Aptamers selected by cell-SELEX for application in cancer studies. , 2010, Bioanalysis.

[15]  Elizabeth M. Nolan,et al.  Tools and tactics for the optical detection of mercuric ion. , 2008, Chemical reviews.

[16]  L. J. Mueller,et al.  pH-responsive nanogated ensemble based on gold-capped mesoporous silica through an acid-labile acetal linker. , 2010, Journal of the American Chemical Society.

[17]  R. Martínez‐Máñez,et al.  The determination of methylmercury in real samples using organically capped mesoporous inorganic materials capable of signal amplification. , 2009, Angewandte Chemie.

[18]  Chad A Mirkin,et al.  Chip-based scanometric detection of mercuric ion using DNA-functionalized gold nanoparticles. , 2008, Analytical chemistry.

[19]  Chuan He,et al.  A general strategy to convert the MerR family proteins into highly sensitive and selective fluorescent biosensors for metal ions. , 2004, Journal of the American Chemical Society.

[20]  Brendan D. Smith,et al.  Regenerable DNA-functionalized hydrogels for ultrasensitive, instrument-free mercury(II) detection and removal in water. , 2010, Journal of the American Chemical Society.

[21]  Heng-wu Chen,et al.  Determination of ultra-trace amount methyl-, phenyl- and inorganic mercury in environmental and biological samples by liquid chromatography with inductively coupled plasma mass spectrometry after cloud point extraction preconcentration. , 2009, Talanta.

[22]  Chulhee Kim,et al.  Enzyme responsive nanocontainers with cyclodextrin gatekeepers and synergistic effects in release of guests. , 2009, Journal of the American Chemical Society.

[23]  Nianqiang Wu,et al.  Detection of mercury(II) by quantum dot/DNA/gold nanoparticle ensemble based nanosensor via nanometal surface energy transfer. , 2011, Analytical chemistry.

[24]  I. Nazarenko,et al.  Effect of primary and secondary structure of oligodeoxyribonucleotides on the fluorescent properties of conjugated dyes. , 2002, Nucleic acids research.

[25]  J. B. Higgins,et al.  A new family of mesoporous molecular sieves prepared with liquid crystal templates , 1992 .

[26]  William R. Dichtel,et al.  Enzyme-responsive snap-top covered silica nanocontainers. , 2008, Journal of the American Chemical Society.