Identification of linear systems from noisy data

Linear dynamic errors-in-variables models with mutually uncorrelated noise components are considered. A main complication in identification is that the systems are not uniquely determined from the (ensemble) second moments of the observations. The authors analyze certain properties of the set of all observationally equivalent systems. In addition, they describe the sets of spectral densities corresponding to a given Frisch corank. The results obtained are of importance for developing and analyzing identification algorithms. >

[1]  Lennart Ljung Optimal and Ad Hoc Adaptation Mechanisms , 1991 .

[2]  G. Franklin,et al.  On satisfying strict positive real condition for convergence by over-parameterization , 1981, 1981 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[3]  Alexander Shapiro,et al.  Identifiability of factor analysis: Some results and open problems , 1985 .

[4]  R. Allen,et al.  Statistical Confluence Analysis by means of Complete Regression Systems , 1935 .

[5]  Eweda Eweda,et al.  Convergence of the RLS and LMS adaptive filters , 1987 .

[6]  Lennart Ljung,et al.  The Extended Kalman Filter as a Parameter Estimator for Linear Systems , 1979 .

[7]  C. Richard Johnson,et al.  Adaptive IIR filtering: Current results and open issues , 1984, IEEE Trans. Inf. Theory.

[8]  Klaus Neumann,et al.  Identification in Dynamic Shock-Error Models , 1979 .

[9]  Lennart Ljung,et al.  On positive real transfer functions and the convergence of some recursive schemes , 1977 .

[10]  R. J. Adcock A Problem in Least Squares , 1878 .

[11]  V. Solo The convergence of AML , 1979 .

[12]  Han-Fu Chen,et al.  Optimal adaptive control and consistent parameter estimates for ARMAX model withquadratic cost , 1987 .

[13]  T. Lai,et al.  Least Squares Estimates in Stochastic Regression Models with Applications to Identification and Control of Dynamic Systems , 1982 .

[14]  Jan-Erik Strömberg,et al.  Trees as Black-Box Model Structures for Dynamical Systems , 1990 .

[15]  Robust recursive identification of multidimensional linear regression models , 1988 .

[16]  R. E. Kalman,et al.  Chapter 2 - Identifiability and Modeling in Econometrics† ,‡ , 1983 .

[17]  Roberto Guidorzi,et al.  Certain models from uncertain data: the algebraic case , 1991 .

[18]  Brian D. O. Anderson,et al.  Identification of scalar errors-in-variables models with dynamics , 1985, Autom..

[19]  William H. Press,et al.  Numerical recipes , 1990 .

[20]  P. Whittle,et al.  Latent Variables in Socio‐Economic Models , 1978 .

[21]  Cheng Hsiao,et al.  Latent variable models in econometrics , 1984 .

[22]  L. Ljung,et al.  Counterexamples to general convergence of a commonly used recursive identification method , 1975 .

[23]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[24]  Wei Ren,et al.  Interlacing Is Not Necessary for Adaptive Control , 1991, 1991 American Control Conference.

[25]  Lei Guo Estimating time-varying parameters by the Kalman filter based algorithm: stability and convergence , 1990 .

[26]  Manfred Deistler,et al.  Symmetric modeling in system identification , 1989 .

[27]  R. E. Kalman,et al.  The prejudices of least squares, principal components and common factor schemes , 1987 .

[28]  B. Anderson,et al.  Linear dynamic errors-in-variables models : Some structure theory , 1989 .

[29]  Jitendra Tugnait Stochastic system identification with noisy input using cumulant statistics , 1992 .

[30]  Brian D. O. Anderson,et al.  Dynamic errors-in-variables systems with three variables , 1987, Autom..

[31]  Hans-Joachim Mittag,et al.  Lineare Modelle mit fehlerbehafteten Daten , 1986 .

[32]  Lennart Ljung,et al.  Recursive methods for off-line identification , 1985 .

[33]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.

[34]  Maciej Niedzwiecki,et al.  Identification/Prediction Algorithms for Armax Models with Relaxed Positive Real Conditions , 1990 .

[35]  E. Hannan,et al.  The statistical theory of linear systems , 1989 .

[36]  J. H. Schuppen Stochastic realization problems , 1989 .

[37]  Han-Fu Chen,et al.  Convergence rate of least-squares identification and adaptive control for stochastic systems† , 1986 .

[38]  Jan C. Willems,et al.  From time series to linear system - Part III: Approximate modelling , 1987, Autom..

[39]  Ioan Doré Landau,et al.  Recursive output error identification algorithms theory and evaluation , 1980, Autom..

[40]  Jan de Leeuw,et al.  The rank of reduced dispersion matrices , 1985 .

[41]  A. Satorra,et al.  Measurement Error Models , 1988 .

[42]  Soura Dasgupta,et al.  Conditions for designing strictly positive real transfer functions for adaptive output error identification , 1987 .

[43]  I. Landau,et al.  An Addendum to "Unbiased recursive identification using model reference adaptive techniques" , 1978 .

[44]  B. Ydstie Stability of discrete model reference adaptive control-revisited , 1990 .

[45]  V. Klema LINPACK user's guide , 1980 .

[46]  Jan C. Willems,et al.  From time series to linear system - Part I. Finite dimensional linear time invariant systems , 1986, Autom..

[47]  J. Kiefer,et al.  Stochastic Estimation of the Maximum of a Regression Function , 1952 .

[48]  Lei Guo,et al.  Robustness analysis of identification and adaptive control for stochastic systems , 1987 .

[49]  Herman Rubin,et al.  Statistical Inference in Factor Analysis , 1956 .

[50]  Edward E. Leamer,et al.  Consistent Sets of Estimates for Regressions with Errors in All Variables , 1984 .

[51]  P. Caines Linear Stochastic Systems , 1988 .

[52]  Manfred Deistler,et al.  Identification of dynamic systems from noisy data: the case m*=n-1 , 1991 .

[53]  W. Ledermann On the rank of the reduced correlational matrix in multiple-factor analysis , 1937 .

[54]  Petar V. Kokotovic,et al.  Examination of the SPR condition in output error parameter estimation , 1986, Autom..

[55]  T. Lai,et al.  Extended least squares and their applications to adaptive control and prediction in linear systems , 1986 .

[56]  Lennart Ljung,et al.  Analysis of recursive stochastic algorithms , 1977 .

[57]  Theodor Bröcker,et al.  Einführung in die Differentialtopologie , 1973 .

[58]  Bruce K. Walker,et al.  Model and simulation development for turbopump health monitoring by parameter estimation , 1989 .

[59]  C. Spearman General intelligence Objectively Determined and Measured , 1904 .

[60]  Jan-Erik Strömberg,et al.  Neural trees-using neural nets in a tree classifier structure , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.

[62]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[63]  Andrew P. Sage,et al.  System Identification , 1971 .

[64]  M. Deistler Linear System Identification — A Survey , 1989 .

[65]  G. Picci,et al.  Dynamic Factor-Analysis Models for Stationary Processes , 1986 .

[66]  T. W. Anderson Estimating Linear Statistical Relationships , 1984 .

[67]  J. Rissanen,et al.  1972 IFAC congress paper: Partial realization of random systems , 1972 .

[68]  Eugen Nowak Global identification of the dynamic shock-error model , 1985 .

[69]  R. Engle,et al.  A One-Factor Multivariate Time Series Model of Metropolitan Wage Rates , 1981 .

[70]  M. Deistler,et al.  Solution sets for linear dynamic errors-in-variables models* , 1991 .

[71]  Lennart Ljung,et al.  Theory and Practice of Recursive Identification , 1983 .

[72]  C. Richard Johnson A stable family of adaptive IIR filters , 1980, ICASSP.

[73]  I. Landau Unbiased recursive identification using model reference adaptive techniques , 1976 .

[74]  W. M. Carey,et al.  Digital spectral analysis: with applications , 1986 .

[75]  Lei Guo,et al.  Least-squares identification for ARMAX models without the positive real condition , 1989 .

[76]  B. Anderson,et al.  Identifiability in dynamic errors-in-variables models , 1983, The 22nd IEEE Conference on Decision and Control.