Nature's Flexible and Tough Armor

[1]  M. Buehler,et al.  Hierarchical Silica Nanostructures Inspired by Diatom Algae Yield Superior Deformability, Toughness, and Strength , 2011 .

[2]  M. Buehler,et al.  ATOMISTICALLY-INFORMED MESOSCALE MODEL OF DEFORMATION AND FAILURE OF BIOINSPIRED HIERARCHICAL SILICA NANOCOMPOSITES , 2010 .

[3]  Joseph C. Fogarty,et al.  A reactive molecular dynamics simulation of the silica-water interface. , 2010, The Journal of chemical physics.

[4]  Zhiping Xu,et al.  Nanoconfinement Controls Stiffness, Strength and Mechanical Toughness of Β-sheet Crystals in Silk , 2010 .

[5]  M. Buehler,et al.  Bioinspired nanoporous silicon provides great toughness at great deformability , 2010 .

[6]  Markus J Buehler,et al.  Strength in numbers. , 2010, Nature nanotechnology.

[7]  Markus J. Buehler,et al.  Hierarchical Structure Controls Nanomechanical Properties of Vimentin Intermediate Filaments , 2009, PloS one.

[8]  Dusan Losic,et al.  Diatomaceous Lessons in Nanotechnology and Advanced Materials , 2009 .

[9]  Durga Madhab Mahapatra,et al.  Milking Diatoms for Sustainable Energy: Biochemical Engineering versus Gasoline-Secreting Diatom Solar Panels , 2009 .

[10]  Harold S. Park,et al.  Quantifying the size-dependent effect of the residual surface stress on the resonant frequencies of silicon nanowires if finite deformation kinematics are considered , 2009, Nanotechnology.

[11]  Markus J Buehler,et al.  Deformation and failure of protein materials in physiologically extreme conditions and disease. , 2009, Nature materials.

[12]  C. Klausmeier,et al.  Contrasting size evolution in marine and freshwater diatoms , 2009, Proceedings of the National Academy of Sciences.

[13]  Qing‐An Huang,et al.  Size-Dependent Elasticity of Silicon Nanowires , 2009 .

[14]  Nicole Poulsen,et al.  Diatoms-from cell wall biogenesis to nanotechnology. , 2008, Annual review of genetics.

[15]  M. Hildebrand Diatoms, biomineralization processes, and genomics. , 2008, Chemical reviews.

[16]  Wolfgang Tremel,et al.  Biofabrication of biosilica-glass by living organisms. , 2008, Natural product reports.

[17]  Yonggang Huang,et al.  Stretchable and Foldable Silicon Integrated Circuits , 2008, Science.

[18]  Adri C. T. van Duin,et al.  A reactive force field (ReaxFF) for zinc oxide , 2008 .

[19]  N. Kröger Prescribing diatom morphology: toward genetic engineering of biological nanomaterials. , 2007, Current opinion in chemical biology.

[20]  Richard Weinkamer,et al.  Nature’s hierarchical materials , 2007 .

[21]  Markus J. Buehler,et al.  Fracture mechanics of protein materials , 2007 .

[22]  Lijun Meng,et al.  Surface reconstruction and core distortion of silicon and germanium nanowires , 2007 .

[23]  Nicolas H Voelcker,et al.  AFM nanoindentations of diatom biosilica surfaces. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[24]  Y. Shibutani,et al.  Atomistic characterization of structural and elastic properties of auxetic crystalline SiO2 , 2007 .

[25]  Dusan Losic,et al.  Atomic force microscopy (AFM) characterisation of the porous silica nanostructure of two centric diatoms , 2007 .

[26]  A. V. Duin,et al.  A Divide-and-Conquer/Cellular-Decomposition Framework for Million-to-Billion Atom Simulations of Chemical Reactions , 2007 .

[27]  Laurent Kreplak,et al.  Biomechanical properties of intermediate filaments: from tissues to single filaments and back , 2007, BioEssays : news and reviews in molecular, cellular and developmental biology.

[28]  Wolfgang Wagermaier,et al.  Cooperative deformation of mineral and collagen in bone at the nanoscale , 2006, Proceedings of the National Academy of Sciences.

[29]  Markus J. Buehler,et al.  Large-Scale Hierarchical Molecular Modeling of Nanostructured Biological Materials , 2006 .

[30]  G. Lehmann,et al.  Silica Pattern Formation in Diatoms: Species‐Specific Polyamine Biosynthesis , 2006, Chembiochem : a European journal of chemical biology.

[31]  Jun Yu Li,et al.  Atomic Scale Chemo-mechanics of Silica: Nano-rod Deformation and Water Reaction , 2006 .

[32]  U. Aebi,et al.  Exploring the mechanical properties of single vimentin intermediate filaments by atomic force microscopy. , 2006, Journal of molecular biology.

[33]  K. Ravi-Chandar,et al.  Nanoscale damage during fracture in silica glass , 2006, cond-mat/0608730.

[34]  R. Dagastine,et al.  Diatom adhesive mucilage contains distinct supramolecular assemblies of a single modular protein. , 2006, Biophysical journal.

[35]  Markus J Buehler,et al.  Multiparadigm modeling of dynamical crack propagation in silicon using a reactive force field. , 2006, Physical review letters.

[36]  Bin Wu,et al.  Microstructure-hardened silver nanowires. , 2006, Nano letters.

[37]  Georg Schitter,et al.  Sacrificial bonds and hidden length: unraveling molecular mesostructures in tough materials. , 2006, Biophysical journal.

[38]  Limin Tong,et al.  Size effects on the stiffness of silica nanowires. , 2006, Small.

[39]  M. Sumper,et al.  Learning from Diatoms: Nature's Tools for the Production of Nanostructured Silica , 2006 .

[40]  Michel Rixen,et al.  Diatom carbon export enhanced by silicate upwelling in the northeast Atlantic , 2005, Nature.

[41]  Limin Tong,et al.  Self-modulated taper drawing of silica nanowires , 2005 .

[42]  J. Aizenberg,et al.  Skeleton of Euplectella sp.: Structural Hierarchy from the Nanoscale to the Macroscale , 2005, Science.

[43]  Yoojeong Kim,et al.  Air-Lift Bioreactors for Algal Growth on Flue Gas: Mathematical Modeling and Pilot-Plant Studies , 2005 .

[44]  Haiyi Liang,et al.  Size-dependent elasticity of nanowires: Nonlinear effects , 2005 .

[45]  A. V. van Duin,et al.  Simulations on the thermal decomposition of a poly(dimethylsiloxane) polymer using the ReaxFF reactive force field. , 2005, Journal of the American Chemical Society.

[46]  M. Stamatakis,et al.  The physical and mechanical properties of composite cements manufactured with calcareous and clayey Greek diatomite mixtures , 2005 .

[47]  A. V. van Duin,et al.  Development of the ReaxFF reactive force field for describing transition metal catalyzed reactions, with application to the initial stages of the catalytic formation of carbon nanotubes. , 2005, The journal of physical chemistry. A.

[48]  A. V. van Duin,et al.  ReaxFF(MgH) reactive force field for magnesium hydride systems. , 2005, The journal of physical chemistry. A.

[49]  Nicole Poulsen,et al.  Silica Morphogenesis by Alternative Processing of Silaffins in the Diatom Thalassiosira pseudonana* , 2004, Journal of Biological Chemistry.

[50]  Nicholas H. Putnam,et al.  The Genome of the Diatom Thalassiosira Pseudonana: Ecology, Evolution, and Metabolism , 2004, Science.

[51]  Jonathan A. Zimmerman,et al.  Calculation of stress in atomistic simulation , 2004 .

[52]  S. Han,et al.  Nanomechanical Behavior of β-SiC Nanowire in Tension: Molecular Dynamics Simulations , 2004 .

[53]  R. Bartlett,et al.  Deformation and Fracture of a SiO2 Nanorod , 2003 .

[54]  A. V. van Duin,et al.  Shock waves in high-energy materials: the initial chemical events in nitramine RDX. , 2003, Physical review letters.

[55]  A. V. Duin,et al.  ReaxFFSiO Reactive Force Field for Silicon and Silicon Oxide Systems , 2003 .

[56]  Y. Isono,et al.  Quasi-static bending test of nano-scale SiO2 wire at intermediate temperatures using AFM-based technique , 2003 .

[57]  Victor Smetacek,et al.  Architecture and material properties of diatom shells provide effective mechanical protection , 2003, Nature.

[58]  M. Sumper,et al.  A Phase Separation Model for the Nanopatterning of Diatom Biosilica , 2002, Science.

[59]  A. V. Duin,et al.  ReaxFF: A Reactive Force Field for Hydrocarbons , 2001 .

[60]  H. Berman,et al.  The crystal and molecular structure of a collagen-like peptide with a biologically relevant sequence. , 2001, Journal of molecular biology.

[61]  Mario Viani,et al.  Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites , 1999, Nature.

[62]  N. Moody,et al.  Determining fracture toughness of vitreous silica glass , 1995 .

[63]  Larson,et al.  Ab initio theory of the Si(111)-(7 x 7) surface reconstruction: A challenge for massively parallel computation. , 1992, Physical review letters.

[64]  W. Goddard,et al.  Charge equilibration for molecular dynamics simulations , 1991 .

[65]  R. Rivkin Radioisotopic Method for Measuring Cell Division Rates of Individual Species of Diatoms from Natural Populations , 1986, Applied and environmental microbiology.

[66]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[67]  S. Fowler,et al.  Viability of marine phytoplankton in zooplankton fecal pellets , 1983 .

[68]  S. Chatterji Mechanism of the CaCl2 attack on portland cement concrete , 1978 .

[69]  S. Taylor,et al.  Abundance of chemical elements in the continental crust: A new table: Geochimica e t Cosmochimica Ac , 1964 .

[70]  B. Alder,et al.  Phase Transition for a Hard Sphere System , 1957 .

[71]  Markus J. Buehler,et al.  Tu(r)ning weakness to strength , 2010 .

[72]  M. Buehler,et al.  Chemical Complexity in Mechanical Deformation of Metals , 2007 .

[73]  A. V. Duin,et al.  The Computational Materials Design Facility (CMDF): A powerful framework for multi-paradigm multi-scale simulations , 2005 .

[74]  Herbert Stachelberger,et al.  Diatom bionanotribology--biological surfaces in relative motion: their design, friction, adhesion, lubrication and wear. , 2005, Journal of nanoscience and nanotechnology.

[75]  Boris Polyak The conjugate gradient method in extremal problems , 1969 .