Six-Critical Graphs on the Klein Bottle

Abstract We exhibit an explicit list of nine graphs such that a graph drawn in the Klein bottle is 5-colorable if and only if it has no subgraph isomorphic to a member of the list. This answers a question of Thomassen [J. Comb. Theory Ser. B 70 (1997), 67–100] and implies an earlier result of Kral', Mohar, Nakamoto, Pangrac and Suzuki that an Eulerian triangulation of the Klein bottle is 5-colorable if and only if it has no complete subgraph on six vertices.

[1]  K. Appel,et al.  Every planar map is four colorable. Part II: Reducibility , 1977 .

[2]  Atsuhiro Nakamoto,et al.  Chromatic numbers of 6-regular graphs on the Klein bottle , 2009, Australas. J Comb..

[3]  David Eppstein,et al.  The Polyhedral Approach to the Maximum Planar Subgraph Problem: New Chances for Related Problems , 1994, GD.

[4]  Carsten Thomassen,et al.  Color-Critical Graphs on a Fixed Surface , 1997, J. Comb. Theory, Ser. B.

[5]  Bojan Mohar,et al.  A Linear Time Algorithm for Embedding Graphs in an Arbitrary Surface , 1999, SIAM J. Discret. Math..

[6]  Steve Fisk The nonexistence of colorings , 1978, J. Comb. Theory, Ser. B.

[7]  G. Ringel Map Color Theorem , 1974 .

[8]  Carsten Thomassen,et al.  Graphs on Surfaces , 2001, Johns Hopkins series in the mathematical sciences.

[9]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[10]  K. Appel,et al.  Every Planar Map Is Four Colorable , 2019, Mathematical Solitaires & Games.

[11]  G. A. Dirac The Colouring of Maps , 1953 .

[12]  G. Dirac Map-Colour Theorems , 1952, Canadian Journal of Mathematics.

[13]  Michael O. Albertson,et al.  THE THREE EXCLUDED CASES OF DIRAC'S MAP‐COLOR THEOREM 1 , 1979 .

[14]  Carsten Thomassen Five-Coloring Graphs on the Torus , 1994, J. Comb. Theory, Ser. B.

[15]  Robin Thomas,et al.  The Four-Colour Theorem , 1997, J. Comb. Theory, Ser. B.

[16]  K. Appel,et al.  Every planar map is four colorable. Part I: Discharging , 1977 .