Chlamydia pneumoniae — an infectious risk factor for atherosclerosis?

Cardiovascular disease, of which atherosclerosis is an important component, is the leading cause of death in the western world. Although there are well-defined risk factors for atherosclerosis, these factors do not account for all incidences of the disease. Because atherosclerotic processes are typified by chronic inflammatory responses, which are similar to those that are elicited by chronic infection, the role of infection in promoting or accelerating atherosclerosis has received renewed attention. This review focuses on the accumulating evidence that chronic infection with Chlamydia pneumoniae, a ubiquitous human respiratory pathogen, might contribute to atherosclerotic lesion progression.

[1]  Aldons J. Lusis,et al.  Atherosclerosis : Vascular biology , 2000 .

[2]  M. Rosenfeld,et al.  Foam Cell Formation Inhibits Growth of Chlamydia pneumoniae but Does Not Attenuate Chlamydia pneumoniae–Induced Secretion of Proinflammatory Cytokines , 2002, Circulation.

[3]  L. Campbell,et al.  Chlamydia pneumoniae sp. nov. for Chlamydia sp. Strain TWAR , 1989 .

[4]  Peter Libby,et al.  Chlamydia pneumoniae as an emerging risk factor in cardiovascular disease. , 2002, JAMA.

[5]  I. Fong,et al.  Influence of Clarithromycin on Early Atherosclerotic Lesions after Chlamydia pneumoniae Infection in a Rabbit Model , 2002, Antimicrobial Agents and Chemotherapy.

[6]  L. Campbell,et al.  Evidence of systemic dissemination of Chlamydia pneumoniae via macrophages in the mouse. , 1998, The Journal of infectious diseases.

[7]  M. Rosenfeld,et al.  Monocyte-endothelial cell coculture enhances infection of endothelial cells with Chlamydia pneumoniae. , 2000, The Journal of infectious diseases.

[8]  J. Raulston,et al.  Molecular characterization and outer membrane association of a Chlamydia trachomatis protein related to the hsp70 family of proteins. , 1993, The Journal of biological chemistry.

[9]  N. Maeda,et al.  Atherosclerosis in mice lacking apo E. Evaluation of lesional development and progression. , 1994, Arteriosclerosis and thrombosis : a journal of vascular biology.

[10]  J. Moulder Interaction of chlamydiae and host cells in vitro. , 1991, Microbiological reviews.

[11]  M. Burnett,et al.  Atherosclerosis in apoE knockout mice infected with multiple pathogens. , 2001, The Journal of infectious diseases.

[12]  R. Ross Atherosclerosis is an inflammatory disease , 1999 .

[13]  H. Fukushi,et al.  Proposal of Chlamydia pecorum sp. nov. for Chlamydia strains derived from ruminants. , 1992, International journal of systematic bacteriology.

[14]  M. Puolakkainen,et al.  Mannose-receptor positive and negative mouse macrophages differ in their susceptibility to infection by Chlamydia species. , 2002, Microbial pathogenesis.

[15]  E. Silverman,et al.  Pathways of Egr-1-mediated gene transcription in vascular biology. , 1999, The American journal of pathology.

[16]  E. O’Brien,et al.  In vitro susceptibility of human vascular wall cells to infection with Chlamydia pneumoniae , 1995, Journal of clinical microbiology.

[17]  P. Kovanen,et al.  Acute Chlamydia pneumoniae infection causes coronary endothelial dysfunction in pigs. , 2003, Atherosclerosis.

[18]  M. Rosenfeld,et al.  Chlamydia pneumoniae infection accelerates hyperlipidemia induced atherosclerotic lesion development in C57BL/6J mice. , 2001, Atherosclerosis.

[19]  R. Stephens,et al.  Mechanism of C. trachomatis attachment to eukaryotic host cells , 1992, Cell.

[20]  M. Cybulsky,et al.  Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. , 1991, Science.

[21]  S. Söderberg,et al.  High prevalence of Chlamydia pneumoniae DNA in peripheral blood mononuclear cells in patients with cardiovascular disease and in middle-aged blood donors. , 1998, The Journal of infectious diseases.

[22]  G. Zhong,et al.  The atherogenic effects of chlamydia are dependent on serum cholesterol and specific to Chlamydia pneumoniae. , 1999, The Journal of clinical investigation.

[23]  M. Leinonen,et al.  Serological response to Chlamydia pneumoniae in patients with sarcoidosis. , 1996, The Journal of infection.

[24]  F. Van de Werf,et al.  Chlamydia pneumoniae induces neointima formation in coronary arteries of normal pigs. , 2003, Cardiovascular research.

[25]  L. Jackson,et al.  Chlamydia pneumoniae (TWAR) , 1995, Clinical microbiology reviews.

[26]  L. Campbell,et al.  Murine models of Chlamydia pneumoniae infection and atherosclerosis. , 1997, The Journal of infectious diseases.

[27]  L. Campbell,et al.  Detection of Chlamydia pneumoniae in arterial tissues. , 2000, The Journal of infectious diseases.

[28]  G. Hansson,et al.  Chlamydia pneumoniae Infection Does Not Induce or Modify Atherosclerosis in Mice , 2001, Circulation.

[29]  M. Rosenfeld,et al.  Chlamydia pneumoniae and Hyperlipidemia Are Co-Risk Factors for Atherosclerosis: Infection Prior to Induction of Hyperlipidemia Does Not Accelerate Development of Atherosclerotic Lesions in C57BL/6J Mice , 2002, Infection and Immunity.

[30]  A. Lee,et al.  Effects of two antibiotic regimens on course and persistence of experimental Chlamydia pneumoniae TWAR pneumonitis , 1995, Antimicrobial agents and chemotherapy.

[31]  C. Minick,et al.  Herpesvirus-induced atherosclerosis in chickens. , 1983, Federation proceedings.

[32]  J. Coucher,et al.  Expression of intercellular adhesion molecule-1 in atherosclerotic plaques. , 1992, The American journal of pathology.

[33]  M. Smieja,et al.  Association of circulating Chlamydia pneumoniae DNA with cardiovascular disease: a systematic review , 2002, BMC infectious diseases.

[34]  U. Mamat,et al.  Endovascular presence of viable Chlamydia pneumoniae is a common phenomenon in coronary artery disease. , 1998, Journal of the American College of Cardiology.

[35]  J. Ramirez,et al.  Interactions of Chlamydia pneumoniae with human endothelial cells. , 2000, The Journal of infectious diseases.

[36]  J. Grayston,et al.  Antibiotic Treatment of Atherosclerotic Cardiovascular Disease , 2003, Circulation.

[37]  W. Beatty,et al.  Persistent chlamydiae: from cell culture to a paradigm for chlamydial pathogenesis. , 1994, Microbiological reviews.

[38]  G. Byrne,et al.  Chlamydia pneumoniae-infected monocytes exhibit increased adherence to human aortic endothelial cells. , 2001, Microbes and infection.

[39]  M. Heinemann,et al.  Growth of Chlamydia pneumoniae induces cytokine production and expression of CD14 in a human monocytic cell line , 1996, Infection and immunity.

[40]  M. Rosenfeld,et al.  Chlamydia pneumoniae Induces Inflammatory Changes in the Heart and Aorta of Normocholesterolemic C57BL/6J Mice , 2000, Infection and Immunity.

[41]  S. Wang,et al.  Importance of reinfection in the pathogenesis of trachoma. , 1985, Reviews of infectious diseases.

[42]  G. Byrne,et al.  Induction of macrophage foam cell formation by Chlamydia pneumoniae. , 1998, The Journal of infectious diseases.

[43]  C. E. Taylor,et al.  Potential infectious etiologies of atherosclerosis: a multifactorial perspective. , 2001, Emerging infectious diseases.

[44]  B. Coombes,et al.  cDNA Array Analysis of Altered Gene Expression in Human Endothelial Cells in Response to Chlamydia pneumoniae Infection , 2001, Infection and Immunity.

[45]  W. Solbach,et al.  Poor correlation between microimmunofluorescence serology and polymerase chain reaction for detection of vascular Chlamydia pneumoniae infection in coronary artery disease patients , 1998, Medical Microbiology and Immunology.

[46]  H. Fukushi,et al.  Demonstration of Chlamydia pneumoniae in atherosclerotic lesions of coronary arteries. , 1993, The Journal of infectious diseases.

[47]  M. Nieminen,et al.  SEROLOGICAL EVIDENCE OF AN ASSOCIATION OF A NOVEL CHLAMYDIA, TWAR, WITH CHRONIC CORONARY HEART DISEASE AND ACUTE MYOCARDIAL INFARCTION , 1988, The Lancet.

[48]  J. Hegemann,et al.  Heparan sulfate-like glycosaminoglycan is a cellular receptor for Chlamydia pneumoniae. , 2001, The Journal of infectious diseases.

[49]  I. Fong,et al.  De Novo Induction of Atherosclerosis byChlamydia pneumoniae in a Rabbit Model , 1999, Infection and Immunity.

[50]  M. Puolakkainen,et al.  Serological response to Chlamydia pneumoniae in adults with coronary arterial fatty streaks and fibrolipid plaques , 1993, Journal of clinical microbiology.

[51]  M. Cybulsky,et al.  High-level expression of Egr-1 and Egr-1-inducible genes in mouse and human atherosclerosis. , 2000, The Journal of clinical investigation.

[52]  H. Caldwell,et al.  Chlamydia trachomatis-host cell interactions: role of the chlamydial major outer membrane protein as an adhesin , 1990, Infection and immunity.

[53]  C. Kuo,et al.  Interaction of Chlamydia trachomatis organisms and HeLa 229 cells , 1976, Infection and immunity.

[54]  M. Leinonen,et al.  Chlamydia pneumoniae Does Not Increase Atherosclerosis in the Aortic Root of Apolipoprotein E-Deficient Mice , 2001, Arteriosclerosis, thrombosis, and vascular biology.

[55]  Richard S. Stephens,et al.  Global Stage-Specific Gene Regulation during the Developmental Cycle of Chlamydia trachomatis , 2003, Journal of bacteriology.

[56]  B. Thomas,et al.  Chlamydia pneumoniae in atherosclerotic tissue. , 2000, The Journal of infectious diseases.

[57]  M. Cybulsky,et al.  Patterns of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 expression in rabbit and mouse atherosclerotic lesions and at sites predisposed to lesion formation. , 1999, Circulation research.

[58]  D. Phillips,et al.  PECAM-1 is required for transendothelial migration of leukocytes , 1993, The Journal of experimental medicine.

[59]  M. Shirai,et al.  Chlamydia pneumoniae in atherosclerotic and nonatherosclerotic tissue. , 2000, The Journal of infectious diseases.

[60]  James Dg Sarcoidosis and other granulomatous disorders , 1988 .

[61]  C. Minick,et al.  Brief Definitive Report , 2003 .

[62]  J. Carlquist,et al.  Infection with Chlamydia pneumoniae accelerates the development of atherosclerosis and treatment with azithromycin prevents it in a rabbit model. , 1998, Circulation.

[63]  R. Poston,et al.  Increase in the adhesion molecule P-selectin in endothelium overlying atherosclerotic plaques. Coexpression with intercellular adhesion molecule-1. , 1994, The American journal of pathology.

[64]  M. Rosenfeld,et al.  Chlamydia pneumoniae infection accelerates the progression of atherosclerosis in apolipoprotein E-deficient mice. , 1999, The Journal of infectious diseases.

[65]  Christopher M O'Connor,et al.  Azithromycin for the secondary prevention of coronary heart disease events: the WIZARD study: a randomized controlled trial. , 2003, JAMA.

[66]  H. Katus,et al.  Hydroxymethylglutaryl coenzyme A reductase inhibitors modify the inflammatory response of human macrophages and endothelial cells infected with Chlamydia pneumoniae. , 2000, Circulation.

[67]  C. Lowenstein,et al.  Effect of azithromycin on murine arteriosclerosis exacerbated by Chlamydia pneumoniae. , 2001, The Journal of infectious diseases.

[68]  Alan D. Lopez,et al.  Mortality by cause for eight regions of the world: Global Burden of Disease Study , 1997, The Lancet.

[69]  R. Schmidt,et al.  Specificity of detection of Chlamydia pneumoniae in cardiovascular atheroma: evaluation of the innocent bystander hypothesis. , 1997, The American journal of pathology.

[70]  J. Grayston Background and current knowledge of Chlamydia pneumoniae and atherosclerosis. , 2000, The Journal of infectious diseases.

[71]  A. Easton,et al.  Evidence that Chlamydia pneumoniae causes pneumonia and bronchitis. , 1993, The Journal of infectious diseases.

[72]  Indrawati,et al.  Chlamydial virulence determinants in atherogenesis: the role of chlamydial lipopolysaccharide and heat shock protein 60 in macrophage-lipoprotein interactions. , 2000, The Journal of infectious diseases.

[73]  H. Katus,et al.  Chlamydia pneumoniae Infection in Circulating Human Monocytes Is Refractory to Antibiotic Treatment , 2001, Circulation.

[74]  S. Wang,et al.  Identification of a new group of Chlamydia psittaci strains called TWAR , 1986, Journal of clinical microbiology.

[75]  P. Kitslaar,et al.  Chlamydia pneumoniae infection induces an unstable atherosclerotic plaque phenotype in LDL-receptor, ApoE double knockout mice. , 2003, European journal of vascular and endovascular surgery : the official journal of the European Society for Vascular Surgery.

[76]  PetruLiuba,et al.  Endothelial Dysfunction After Repeated Chlamydia pneumoniae Infection in Apolipoprotein E–Knockout Mice , 2000 .

[77]  A. Gown,et al.  Detection of Chlamydia pneumoniae in aortic lesions of atherosclerosis by immunocytochemical stain. , 1993, Arteriosclerosis and thrombosis : a journal of vascular biology.

[78]  R. Dietz,et al.  Chlamydia pneumoniae infection of vascular smooth muscle and endothelial cells activates NF-kappaB and induces tissue factor and PAI-1 expression: a potential link to accelerated arteriosclerosis. , 1999, Circulation.

[79]  G. Rodgers,et al.  Chlamydia species infect human vascular endothelial cells and induce procoagulant activity. , 1997, Journal of investigative medicine : the official publication of the American Federation for Clinical Research.

[80]  A. Lee,et al.  Isolation of Chlamydia pneumoniae from a carotid endarterectomy specimen. , 1997, The Journal of infectious diseases.

[81]  N. Hogg,et al.  Structure and function of adhesion receptors in leukocyte trafficking. , 1995, Immunology today.

[82]  M. Leinonen,et al.  Expression of adhesion molecules on endothelial cells stimulated by Chlamydia pneumoniae. , 1996, Microbial pathogenesis.

[83]  R. Karas,et al.  Effect of short-term antibiotic treatment on Chlamydia pneumoniae and peripheral endothelial function. , 2003, American Journal of Cardiology.

[84]  I. Fong,et al.  Chlamydia pneumoniae infection of endothelial cells induces transcriptional activation of platelet-derived growth factor-B: a potential link to intimal thickening in a rabbit model of atherosclerosis. , 2002, The Journal of infectious diseases.

[85]  Hyun-Young Park,et al.  Upregulation of extracellular matrix metalloproteinase inducer (EMMPRIN) and gelatinases in human atherosclerosis infected with Chlamydia pneumoniae: The potential role of Chlamydia pneumoniae infection in the progression of atherosclerosis , 2002, Experimental & Molecular Medicine.

[86]  R. Ross,et al.  ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. , 1994, Arteriosclerosis and thrombosis : a journal of vascular biology.

[87]  N. Mackman,et al.  Chlamydia pneumoniae Induces Tissue Factor Expression in Mouse Macrophages via Activation of Egr-1 and the MEK-ERK1/2 Pathway , 2003, Circulation research.

[88]  P. Libby,et al.  Chlamydial and human heat shock protein 60s activate human vascular endothelium, smooth muscle cells, and macrophages. , 1999, The Journal of clinical investigation.

[89]  Y. Goo,et al.  Chlamydia pneumoniae (TWAR) in coronary arteries of young adults (15-34 years old). , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[90]  D. Patton,et al.  Detection of Chlamydia pneumoniae in coronary arterial fatty streaks and atheromatous plaques. , 1992, South African medical journal = Suid-Afrikaanse tydskrif vir geneeskunde.

[91]  R. Peeling,et al.  Chlamydia pneumoniae serology: interlaboratory variation in microimmunofluorescence assay results. , 2000, The Journal of infectious diseases.

[92]  M. Puolakkainen,et al.  Cell-to-cell contact of human monocytes with infected arterial smooth-muscle cells enhances growth of Chlamydia pneumoniae. , 2003, The Journal of infectious diseases.

[93]  J. Ngeh,et al.  Chlamydia pneumoniae and atherosclerosis -- what we know and what we don't. , 2002, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[94]  P. Libby,et al.  Chlamydial heat shock protein 60 localizes in human atheroma and regulates macrophage tumor necrosis factor-alpha and matrix metalloproteinase expression. , 1998, Circulation.

[95]  A. F. Swanson,et al.  An N-linked high-mannose type oligosaccharide, expressed at the major outer membrane protein of Chlamydia trachomatis, mediates attachment and infectivity of the microorganism to HeLa cells. , 1996, The Journal of clinical investigation.

[96]  I. Fong Antibiotics effects in a rabbit model of Chlamydia pneumoniae-induced atherosclerosis. , 2000, The Journal of infectious diseases.

[97]  R. Dietz,et al.  Hydroxymethylglutaryl Coenzyme A Reductase Inhibition Reduces Chlamydia pneumoniae‐Induced Cell Interaction and Activation , 2003, Circulation.

[98]  C. R. Bagnell,et al.  Entry of genital Chlamydia trachomatis into polarized human epithelial cells , 1989, Infection and immunity.

[99]  J. Ramirez,et al.  Replication of Chlamydia pneumoniae in vitro in human macrophages, endothelial cells, and aortic artery smooth muscle cells , 1996, Infection and immunity.

[100]  Roger E Bumgarner,et al.  Chlamydia trachomatis infection alters host cell transcription in diverse cellular pathways. , 2003, The Journal of infectious diseases.

[101]  J. Ramírez Isolation of Chlamydia pneumoniae from the Coronary Artery of a Patient with Coronary Atherosclerosis , 1996, Annals of Internal Medicine.

[102]  B. Jones,et al.  Chlamydial infection. Results of micro-immunofluorescence tests for the detection of type-specific antibody in certain chlamydial infections. , 1972, The British journal of venereal diseases.

[103]  M. Leinonen,et al.  Chlamydia pneumoniae infection induces inflammatory changes in the aortas of rabbits , 1997, Infection and immunity.

[104]  J. C. Chen,et al.  Chlamydia trachomatis glycosaminoglycan-dependent and independent attachment to eukaryotic cells. , 1997, Microbial pathogenesis.