Direct observation of selective autophagy induction in cells and tissues by self-assembled chiral nanodevice

[1]  N. Kotov,et al.  Site-selective photoinduced cleavage and profiling of DNA by chiral semiconductor nanoparticles , 2018, Nature Chemistry.

[2]  Sarah F. McComish,et al.  Nanoparticle-induced neuronal toxicity across placental barriers is mediated by autophagy and dependent on astrocytes , 2018, Nature Nanotechnology.

[3]  Nam Heon Cho,et al.  Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles , 2018, Nature.

[4]  L. Liz‐Marzán,et al.  Cellular Uptake of Gold Nanoparticles Triggered by Host-Guest Interactions. , 2018, Journal of the American Chemical Society.

[5]  A. Barducci,et al.  Chaperones convert the energy from ATP into the nonequilibrium stabilization of native proteins , 2018, Nature Chemical Biology.

[6]  D. Klionsky,et al.  Cargo recognition and degradation by selective autophagy , 2018, Nature Cell Biology.

[7]  Meng Li,et al.  Autophagy Caught in the Act: A Supramolecular FRET Pair Based on an Ultrastable Synthetic Host-Guest Complex Visualizes Autophagosome-Lysosome Fusion. , 2018, Angewandte Chemie.

[8]  T. Galli,et al.  Ultrabright and Fluorogenic Probes for Multicolor Imaging and Tracking of Lipid Droplets in Cells and Tissues. , 2018, Journal of the American Chemical Society.

[9]  N. Kotov,et al.  Chiromagnetic nanoparticles and gels , 2018, Science.

[10]  Yi Lu,et al.  Upconversion Luminescence-Activated DNA Nanodevice for ATP Sensing in Living Cells. , 2018, Journal of the American Chemical Society.

[11]  Liguang Xu,et al.  Tuning the interactions between chiral plasmonic films and living cells , 2017, Nature Communications.

[12]  S. Alben,et al.  Intracellular localization of nanoparticle dimers by chirality reversal , 2017, Nature Communications.

[13]  B. Tang,et al.  Mitochondrial Imaging with Combined Fluorescence and Stimulated Raman Scattering Microscopy Using a Probe of the Aggregation-Induced Emission Characteristic. , 2017, Journal of the American Chemical Society.

[14]  Namrata Singh,et al.  A Redox Modulatory Mn3 O4 Nanozyme with Multi-Enzyme Activity Provides Efficient Cytoprotection to Human Cells in a Parkinson's Disease Model. , 2017, Angewandte Chemie.

[15]  Yao-Xin Lin,et al.  Recent Advances in Nanotechnology for Autophagy Detection. , 2017, Small.

[16]  Liguang Xu,et al.  Dual Quantification of MicroRNAs and Telomerase in Living Cells. , 2017, Journal of the American Chemical Society.

[17]  P. Agostinis,et al.  An autophagy-driven pathway of ATP secretion supports the aggressive phenotype of BRAFV600E inhibitor-resistant metastatic melanoma cells , 2017, Autophagy.

[18]  Yachao Li,et al.  Bioinspired Design of Stereospecific d-Protein Nanomimics for High-Efficiency Autophagy Induction , 2017 .

[19]  F. Di Virgilio,et al.  Use of luciferase probes to measure ATP in living cells and animals , 2017, Nature Protocols.

[20]  Fengli Gao,et al.  A Singlet Oxygen Generating Agent by Chirality‐dependent Plasmonic Shell‐Satellite Nanoassembly , 2017, Advanced materials.

[21]  N. Kotov,et al.  Chiral Inorganic Nanostructures. , 2017, Chemical reviews.

[22]  Ping Yu,et al.  Mitochondria Targeted Nanoscale Zeolitic Imidazole Framework-90 for ATP Imaging in Live Cells. , 2017, Journal of the American Chemical Society.

[23]  Cynthia Y. He,et al.  ATP-driven and AMPK-independent autophagy in an early branching eukaryotic parasite , 2017, Autophagy.

[24]  Yao-Xin Lin,et al.  An in Situ Intracellular Self-Assembly Strategy for Quantitatively and Temporally Monitoring Autophagy. , 2017, ACS nano.

[25]  Liguang Xu,et al.  Self-assembled nanoparticle dimers with contemporarily relevant properties and emerging applications , 2016 .

[26]  D. Shangguan,et al.  A Cyanine Dye to Probe Mitophagy: Simultaneous Detection of Mitochondria and Autolysosomes in Live Cells. , 2016, Journal of the American Chemical Society.

[27]  Liqiang Liu,et al.  A self-assembled chiral-aptasensor for ATP activity detection. , 2016, Nanoscale.

[28]  I. Willner,et al.  DNA Scaffolds for the Dictated Assembly of Left-/Right-Handed Plasmonic Au NP Helices with Programmed Chiro-Optical Properties. , 2016, Journal of the American Chemical Society.

[29]  N. Kotov,et al.  Reconfigurable chiroptical nanocomposites with chirality transfer from the macro- to the nanoscale. , 2016, Nature materials.

[30]  Erratum , 2016, Autophagy.

[31]  Liguang Xu,et al.  Dual-Mode Ultrasensitive Quantification of MicroRNA in Living Cells by Chiroplasmonic Nanopyramids Self-Assembled from Gold and Upconversion Nanoparticles. , 2016, Journal of the American Chemical Society.

[32]  Elena Aznar,et al.  Gated Materials for On-Command Release of Guest Molecules. , 2016, Chemical reviews.

[33]  Jun‐Jie Zhu,et al.  Nanomaterial-based activatable imaging probes: from design to biological applications. , 2015, Chemical Society reviews.

[34]  Liguang Xu,et al.  Unusual Circularly Polarized Photocatalytic Activity in Nanogapped Gold–Silver Chiroplasmonic Nanostructures , 2015 .

[35]  V. Rotello,et al.  "Superchiral" Spectroscopy: Detection of Protein Higher Order Hierarchical Structure with Chiral Plasmonic Nanostructures. , 2015, Journal of the American Chemical Society.

[36]  Lianhui Wang,et al.  Intracellular Adenosine Triphosphate Deprivation through Lanthanide-Doped Nanoparticles. , 2015, Journal of the American Chemical Society.

[37]  Yi Wang,et al.  Self‐Assembled Autophagy‐Inducing Polymeric Nanoparticles for Breast Cancer Interference In‐Vivo , 2015, Advanced materials.

[38]  C. Mao,et al.  Self-assembly of molecule-like nanoparticle clusters directed by DNA nanocages. , 2015, Journal of the American Chemical Society.

[39]  Liqiang Liu,et al.  Pyramidal sensor platform with reversible chiroptical signals for DNA detection. , 2014, Small.

[40]  Yi Zhang,et al.  Tuning cell autophagy by diversifying carbon nanotube surface chemistry. , 2014, ACS nano.

[41]  Nikolai G Khlebtsov,et al.  Uptake of engineered gold nanoparticles into mammalian cells. , 2014, Chemical reviews.

[42]  Liguang Xu,et al.  Attomolar DNA detection with chiral nanorod assemblies , 2013, Nature Communications.

[43]  Liqiang Liu,et al.  Plasmonic Chirogenesis from Gold Nanoparticles Superstructures , 2013 .

[44]  L. Galluzzi,et al.  Autophagy-dependent ATP release from dying cells via lysosomal exocytosis , 2013, Autophagy.

[45]  Mingyuan Gao,et al.  Magnetic/upconversion fluorescent NaGdF4:Yb,Er nanoparticle-based dual-modal molecular probes for imaging tiny tumors in vivo. , 2013, ACS nano.

[46]  Liguang Xu,et al.  Self-assembly of chiral nanoparticle pyramids with strong R/S optical activity. , 2012, Journal of the American Chemical Society.

[47]  S. Moncada,et al.  Activated macrophages utilize glycolytic ATP to maintain mitochondrial membrane potential and prevent apoptotic cell death , 2012, Cell Death and Differentiation.

[48]  Robert Clarke,et al.  Guidelines for the use and interpretation of assays for monitoring autophagy , 2012 .

[49]  Taolei Sun,et al.  Chiral biointerface materials. , 2012, Chemical Society reviews.

[50]  R. Amaravadi Autophagy in Tumor Immunity , 2011, Science.

[51]  Xing-Jie Liang,et al.  Gold nanoparticles induce autophagosome accumulation through size-dependent nanoparticle uptake and lysosome impairment. , 2011, ACS nano.

[52]  Sunghoon Kwon,et al.  Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap. , 2011, Nature nanotechnology.

[53]  Yunlong Zhou,et al.  Chirality of glutathione surface coating affects the cytotoxicity of quantum dots. , 2011, Angewandte Chemie.

[54]  Deny Hartono,et al.  Autophagy and oxidative stress associated with gold nanoparticles. , 2010, Biomaterials.

[55]  S. Moncada,et al.  Activated macrophages utilize glycolytic ATP to maintain mitochondrial membrane potential and prevent apoptotic cell death , 2010, Cell Death and Differentiation.

[56]  M. Narita,et al.  Autophagy Detection During Oncogene-Induced Senescence Using Fluorescence Microscopy. , 2017, Methods in molecular biology.

[57]  Namrata Singh,et al.  Redox Modulatory Mn3O4 Nanozyme with Multi-enzyme Activity Provides Efficient Cytoprotection to Human Cells in Parkinson’s Disease Model** , 2017 .

[58]  Petr Král,et al.  Chiral templating of self-assembling nanostructures by circularly polarized light. , 2015, Nature materials.