National classification of surface–groundwater interaction using random forest machine learning technique

[1]  Hemant Ishwaran,et al.  The effect of splitting on random forests , 2014, Machine Learning.

[2]  Wei Liu,et al.  Citizen science for hydrological risk reduction and resilience building , 2018 .

[3]  Nick Marsh,et al.  Classification of natural flow regimes in Australia to support environmental flow management , 2010 .

[4]  D. Carlisle,et al.  Classification of California streams using combined deductive and inductive approaches: Setting the foundation for analysis of hydrologic alteration , 2017 .

[5]  Houtao Deng,et al.  Guided Random Forest in the RRF Package , 2013, ArXiv.

[6]  Wenjiang J. Fu,et al.  Estimating misclassification error with small samples via bootstrap cross-validation , 2005, Bioinform..

[7]  Ton H. Snelder,et al.  Predictive mapping of the natural flow regimes of France , 2009 .

[8]  P. Döll,et al.  Groundwater use for irrigation - a global inventory , 2010 .

[9]  Inter-comparison of experimental catchment data and hydrological modelling , 2017 .

[10]  Ton H. Snelder,et al.  Improved eco‐hydrological classification of rivers , 2005 .

[11]  Vincent L. Versace,et al.  Hydrologic Landscape Regionalisation Using Deductive Classification and Random Forests , 2014, PloS one.

[12]  Ton H. Snelder,et al.  NATURAL FLOW REGIME CLASSIFICATIONS ARE SENSITIVE TO DEFINITION PROCEDURES , 2013 .

[13]  David B. Arscott,et al.  Recent perspectives on temporary river ecology , 2011, Aquatic Sciences.

[14]  D. R. Cutler,et al.  Utah State University From the SelectedWorks of , 2017 .

[15]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[16]  R. Naiman,et al.  The challenge of providing environmental flow rules to sustain river ecosystems. , 2006, Ecological applications : a publication of the Ecological Society of America.

[17]  Julian D. Olden,et al.  A framework for hydrologic classification with a review of methodologies and applications in ecohydrology , 2012 .

[18]  J. Barquín,et al.  Mapping the temporary and perennial character of whole river networks , 2017 .

[19]  M. Rattenbury,et al.  The QMAP 1:250 000 Geological Map of New Zealand project , 2012 .

[20]  David G. Tarboton,et al.  Application of TOPNET in the distributed model intercomparison project , 2004 .

[21]  Thomas C Winter,et al.  Delineation and Evaluation of Hydrologic-Landscape Regions in the United States Using Geographic Information System Tools and Multivariate Statistical Analyses , 2004, Environmental management.

[22]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[23]  Alexia María González Ferreras,et al.  Mapping the temporary and perennial character of whole river networks , 2017 .

[24]  R. Woods,et al.  Comparing and combining physically-based and empirically-based approaches for estimating the hydrology of ungauged catchments , 2014 .

[25]  H. McMillan,et al.  Modeling surface water–groundwater interaction in New Zealand: Model development and application , 2017 .

[26]  F. Martínez‐Capel,et al.  Hydrological Classification of Natural Flow Regimes to Support Environmental Flow Assessments in Intensively Regulated Mediterranean Rivers, Segura River Basin (Spain) , 2011, Environmental management.