Design and Applications of Nanomaterial-Based and Biomolecule-Based Nanodevices and Nanosensors

This review will highlight recent research underlying the design of novel nanodevices and nanosensors that incorporate graphene, nanodots, nanowires, and biomolecules including DNA aptamers and peptides. The emphasis is on models and theory that guide the design of these nanodevices and nanosensors. In selected cases, research designed to test the usefulness of these designs is highlighted in this chapter.

[1]  M. Stroscio,et al.  Electrical conductivity and dielectric properties of PMMA/graphite nanoplatelet ensembles , 2012 .

[2]  Guang Zhu,et al.  Flexible high-output nanogenerator based on lateral ZnO nanowire array. , 2010, Nano letters.

[3]  Yiping Zhao,et al.  Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates , 2005 .

[4]  M. Bruchez,et al.  Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots , 2003, Nature Biotechnology.

[5]  Masoumeh Meskinfam,et al.  Covalent hybridizations of carbon nanotubes through peptide linkages: A density functional approach , 2012 .

[6]  R. Withers,et al.  Electron Devices on Piezoelectric Semiconductors: A Device Model , 1984, IEEE Transactions on Sonics and Ultrasonics.

[7]  Naveen Verma,et al.  Design considerations for ultra-low energy wireless microsensor nodes , 2005, IEEE Transactions on Computers.

[8]  Jidong Wang,et al.  Semiconductor quantum dots surface modification for potential cancer diagnostic and therapeutic applications , 2012 .

[9]  Mickaël Lallart,et al.  Recent Progress in Piezoelectric Conversion and Energy Harvesting Using Nonlinear Electronic Interfaces and Issues in Small Scale Implementation , 2011, Micromachines.

[10]  Jianlin Liu,et al.  Ge/Si Self-Assembled Quantum Dots and Their Optoelectronic Device Applications , 2007, Proceedings of the IEEE.

[11]  Jörg Maser,et al.  Biology of TiO2–oligonucleotide nanocomposites , 2003, Nature materials.

[12]  D. A. Stuart,et al.  Towards advanced chemical and biological nanosensors-An overview. , 2005, Talanta.

[13]  C. M. Li,et al.  Nanoelectronic biosensors based on CVD grown graphene. , 2010, Nanoscale.

[14]  SUPARNA DUTTASINHA,et al.  Graphene: Status and Prospects , 2009, Science.

[15]  Yuan-Hsiang Lee,et al.  Silver-doped sol–gel films as the substrate for surface-enhanced Raman scattering , 1997 .

[16]  Kevin W Plaxco,et al.  Aptamer-based electrochemical detection of picomolar platelet-derived growth factor directly in blood serum. , 2007, Analytical chemistry.

[17]  R. V. Van Duyne,et al.  A comparative analysis of localized and propagating surface plasmon resonance sensors: the binding of concanavalin a to a monosaccharide functionalized self-assembled monolayer. , 2004, Journal of the American Chemical Society.

[18]  Tetyana V. Torchynska,et al.  Photoluminescence of core‐shell CdSe/ZnS quantum dots of different sizes , 2009 .

[19]  Mitra Dutta,et al.  A theoretical study on the effect of piezoelectric charges on the surface potential and surface depletion region of ZnO nanowires , 2012 .

[20]  Ke Xu,et al.  Graphene-based FET structure: Modeling FET characteristics for an aptamer-based analyte sensor , 2012, 2012 15th International Workshop on Computational Electronics.

[21]  Ian M Thompson,et al.  Prostate‐specific antigen: A review of the validation of the most commonly used cancer biomarker , 2004, Cancer.

[22]  Rainer Matischek,et al.  A Bulk Acoustic Wave (BAW) Based Transceiver for an In-Tire-Pressure Monitoring Sensor Node , 2010, IEEE Journal of Solid-State Circuits.

[23]  Harry E. Ruda,et al.  Polarization-sensitive optical phenomena in semiconducting and metallic nanowires , 2005 .

[24]  Y. Mo,et al.  Vibrational modes study of thymine on the surface of copper electrode using SERS-measurement and the DFT method , 2009 .

[25]  Yang Li,et al.  Semiconductor nanostructures in biological applications , 2005 .

[26]  Norbert F. Scherer,et al.  Charge Transfer Across the Nanocrystalline-DNA Interface: Probing DNA Recognition , 2004 .

[27]  M. Prato,et al.  Synthesis, structural characterization, and immunological properties of carbon nanotubes functionalized with peptides. , 2003, Journal of the American Chemical Society.

[28]  Eli Kapon,et al.  Effect of lateral confinement on valence-band mixing and polarization anisotropy in quantum wires , 1998 .

[29]  Qiang Wang,et al.  Getting to guanine: mechanism and dynamics of charge separation and charge recombination in DNA revisited , 2008, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[30]  R. Naik,et al.  Biomimetic chemosensor: designing peptide recognition elements for surface functionalization of carbon nanotube field effect transistors. , 2010, ACS nano.

[31]  J. Hua,et al.  Highly efficient inverted type-I CdS/CdSe core/shell structure QD-sensitized solar cells. , 2012, ACS nano.

[32]  N. Sugimoto,et al.  Ultrasensitive and Selective Detection of a Prognostic Indicator in Early‐Stage Cancer Using Graphene Oxide and Carbon Nanotubes , 2010 .

[33]  Tiffany R. Walsh,et al.  Modeling the Binding Affinity of Peptides for Graphitic Surfaces. Influences of Aromatic Content and Interfacial Shape , 2009 .

[34]  Klaus Sattler,et al.  Handbook of nanophysics , 2010 .

[35]  Shuming Nie,et al.  Multicolor quantum dots for molecular diagnostics of cancer , 2006, Expert review of molecular diagnostics.

[36]  S. Nie,et al.  Quantum dot bioconjugates for ultrasensitive nonisotopic detection. , 1998, Science.

[37]  Michael Jetter,et al.  InP quantum dots for applications in laser devices and future solid-state quantum gates. J Phys 245:012077 , 2010 .

[38]  S. Senz,et al.  Energy Harvesting Using Nanowires? , 2008 .

[39]  T. Globus,et al.  Optoelectronic Signatures of Biomolecules Including Hybrid Nanostructure-DNA Ensembles , 2008, IEEE Sensors Journal.

[40]  M. Stroscio,et al.  Computational analysis on the emission of ZnO nanowires and coreshell CdSe/ZnS quantum dots deposited on different substrates , 2012, 2012 15th International Workshop on Computational Electronics.

[41]  Yiping Zhao,et al.  Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate. , 2006, Nano letters.

[42]  M. Bawendi,et al.  (CdSe)ZnS Core-Shell Quantum Dots - Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites , 1997 .

[43]  Mitra Dutta,et al.  Surface-enhanced Raman spectroscopy study of single stranded DNA sequences on silver nanorod array , 2012 .

[44]  Y. Chiang,et al.  Peptides with selective affinity for carbon nanotubes , 2003, Nature materials.

[45]  Rajesh R Naik,et al.  Structure of a peptide adsorbed on graphene and graphite. , 2012, Nano letters.

[46]  Liang Li,et al.  Core/Shell semiconductor nanocrystals. , 2009, Small.

[47]  D. Yee,et al.  Quantum dots for cancer diagnosis and therapy: biological and clinical perspectives. , 2008, Nanomedicine.

[48]  R. Norris,et al.  Warm tropical ocean surface and global anoxia during the mid-Cretaceous period , 2001, Nature.

[49]  Uzi Landman,et al.  Oxidation of DNA: damage to nucleobases. , 2010, Accounts of chemical research.

[50]  Gerald F. Joyce,et al.  Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA , 1990, Nature.

[51]  L. Gold,et al.  Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. , 1990, Science.

[52]  J. Szostak,et al.  In vitro selection of RNA molecules that bind specific ligands , 1990, Nature.

[53]  Yoshiyuki Kawazoe,et al.  A theoretical study on the interaction of aromatic amino acids with graphene and single walled carbon nanotube. , 2009, The Journal of chemical physics.

[54]  G. Schatz,et al.  The Extinction Spectra of Silver Nanoparticle Arrays: Influence of Array Structure on Plasmon Resonance Wavelength and Width† , 2003 .

[55]  C. Lieber,et al.  Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species , 2001, Science.

[56]  Y. Ben-Ezra,et al.  Quantum dot-in-a-well laser applications in analog optical links , 2011, 2011 13th International Conference on Transparent Optical Networks.

[57]  V. Bulović,et al.  Inorganic-organic hybrid solar cell: bridging quantum dots to conjugated polymer nanowires. , 2011, Nano letters.

[58]  E. M. Lifshitz,et al.  Electrodynamics of continuous media , 1961 .

[59]  Latika Menon,et al.  Optimal Parameters for Synthesis of Magnetic Nanowires in Porous Alumina Templates Electrodeposition Study , 2007 .

[60]  Masayuki Nogami,et al.  Fabricating Au–Ag core-shell composite films for surface-enhanced Raman scattering , 2008, Journal of Materials Science.

[61]  Hui Xie,et al.  Diameter-selective solubilization of single-walled carbon nanotubes by reversible cyclic peptides. , 2005, Journal of the American Chemical Society.

[62]  Hoeil Chung,et al.  Square wave voltammetric detection of Anthrax utilizing a peptide for selective recognition of a protein biomarker. , 2009, Biosensors & bioelectronics.

[63]  Tze Chien Sum,et al.  Tailoring the charge carrier dynamics in ZnO nanowires: the role of surface hole/electron traps. , 2012, Physical chemistry chemical physics : PCCP.

[64]  Vladimir M. Shalaev,et al.  Searching for better plasmonic materials , 2009, 0911.2737.

[65]  A. Alivisatos Perspectives on the Physical Chemistry of Semiconductor Nanocrystals , 1996 .

[66]  Masayuki Nogami,et al.  Aligned silver nanorod arrays for surface-enhanced Raman scattering , 2006, Nanotechnology.

[67]  Zhong Lin Wang,et al.  Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays , 2006, Science.

[68]  James O McNamara,et al.  Targeted inhibition of αvβ3 integrin with an RNA aptamer impairs endothelial cell growth and survival , 2005 .

[69]  Xin Wang,et al.  Needleless electrospinning of uniform nanofibers using spiral coil spinnerets , 2012 .

[70]  R. V. Van Duyne,et al.  Localized surface plasmon resonance spectroscopy and sensing. , 2007, Annual review of physical chemistry.

[71]  Yu Huang,et al.  Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices , 2001, Nature.

[72]  Riichiro Saito,et al.  Berry's Phase and Absence of Back Scattering in Carbon Nanotubes. , 1998 .

[73]  Mustafa Çulha,et al.  Oligonucleotide-Mediated Au–Ag Core–Shell Nanoparticles , 2009 .

[74]  Mitra Dutta,et al.  Biological Nanostructures and Applications of Nanostructures in Biology , 2013 .

[75]  Igor Nabiev,et al.  Biocompatible fluorescent nanocrystals for immunolabeling of membrane proteins and cells. , 2004, Analytical biochemistry.

[76]  Mitra Dutta,et al.  Surface-enhanced Raman spectroscopy signatures of an RNA molecule: An aptamer that binds to αvβ3 integrin , 2012 .

[77]  Jan Greve,et al.  Surface-enhanced Raman spectroscopy of DNA bases , 1986 .

[78]  Jun-Jie Yin,et al.  Oxidative damage to nucleic acids photosensitized by titanium dioxide. , 1997, Free radical biology & medicine.

[79]  Gobinda Gopal Khan,et al.  Nanowires: properties, applications and synthesis via porous anodic aluminium oxide template , 2007 .

[80]  Yiping Zhao,et al.  The SERS response of semiordered Ag nanorod arrays fabricated by template oblique angle deposition , 2010 .

[81]  Chun Li,et al.  Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. , 2008, Journal of the American Chemical Society.

[82]  Kevin W Plaxco,et al.  A reagentless signal-on architecture for electronic, aptamer-based sensors via target-induced strand displacement. , 2005, Journal of the American Chemical Society.

[83]  M. Dahan,et al.  Time-gated biological imaging by use of colloidal quantum dots. , 2001, Optics letters.

[84]  Mitra Dutta,et al.  INTERACTIONS OF THz VIBRATIONAL MODES WITH CHARGE CARRIERS IN DNA: POLARON-PHONON INTERACTIONS , 2007 .

[85]  Challa S. S. R. Kumar,et al.  Nanomaterials for biosensors , 2007 .

[86]  Mitra Dutta,et al.  Phonons in Nanostructures , 2001 .

[87]  Ciara K O'Sullivan,et al.  Reagentless, reusable, ultrasensitive electrochemical molecular beacon aptasensor. , 2006, Journal of the American Chemical Society.

[88]  Akiyama,et al.  Optical anisotropy in 5-nm-scale T-shaped quantum wires fabricated by the cleaved-edge overgrowth method. , 1996, Physical review. B, Condensed matter.

[89]  Ying Zhang,et al.  High-quality violet- to red-emitting ZnSe/CdSe core/shell nanocrystals , 2005 .

[90]  Charles M. Lieber,et al.  Directed assembly of one-dimensional nanostructures into functional networks. , 2001, Science.

[91]  Kevin W Plaxco,et al.  Excimer-based peptide beacons: a convenient experimental approach for monitoring polypeptide-protein and polypeptide-oligonucleotide interactions. , 2006, Journal of the American Chemical Society.

[92]  Charles M. Lieber,et al.  Functional nanoscale electronic devices assembled using silicon nanowire building blocks. , 2001, Science.

[93]  Weihong Tan,et al.  Synthetic DNA Aptamers to Detect Protein Molecular Variants in a High‐Throughput Fluorescence Quenching Assay , 2003, Chembiochem : a European journal of chemical biology.

[94]  C. O’Sullivan Aptasensors – the future of biosensing? , 2002, Analytical and bioanalytical chemistry.

[95]  M. Moskovits Surface‐enhanced Raman spectroscopy: a brief retrospective , 2005 .

[96]  Candan Tamerler,et al.  Controlling self-assembly of engineered peptides on graphite by rational mutation. , 2012, ACS nano.

[97]  Khalil Najafi,et al.  A self-supplied inertial piezoelectric energy harvester with power-management IC , 2011, 2011 IEEE International Solid-State Circuits Conference.

[98]  David A. Fattal,et al.  Plasmonic optical antennas on dielectric gratings with high field enhancement for surface enhanced Raman spectroscopy , 2009 .

[99]  Volker A. Erdmann,et al.  High-affinity RNA as a recognition element in a biosensor , 1998 .

[100]  S. Nie,et al.  Luminescent quantum dots for multiplexed biological detection and imaging. , 2002, Current opinion in biotechnology.

[101]  Kong,et al.  Nanotube molecular wires as chemical sensors , 2000, Science.

[102]  A. Heeger,et al.  Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor. , 2005, Angewandte Chemie.

[103]  Francisco Guinea,et al.  Erratum: Conductance quantization in mesoscopic graphene [Phys. Rev. B 73, 195411 (2006)] , 2006 .

[104]  Mitra Dutta,et al.  Advances in semiconductor lasers and applications to optoelectronics , 2000 .

[105]  Norris,et al.  Photoluminescence Spectroscopy of Single CdSe Nanocrystallite Quantum Dots. , 1996, Physical review letters.

[106]  Jeong-O Lee,et al.  Single-walled carbon nanotube biosensors using aptamers as molecular recognition elements. , 2005, Journal of the American Chemical Society.

[107]  Hoeil Chung,et al.  Sensitive detection of an anthrax biomarker using a glassy carbon electrode with a consecutively immobilized layer of polyaniline/carbon nanotube/peptide. , 2011, Biosensors & bioelectronics.

[108]  F. S. Hickernell The piezoelectric semiconductor and acoustoelectronic device development in the sixties , 2005 .

[109]  P. Wallace The Band Theory of Graphite , 1947 .

[110]  C. N. Stewart,et al.  Optoelectronic Signatures of DNA-Based Hybrid Nanostructures , 2011, IEEE Transactions on Nanotechnology.

[111]  S. Xiao,et al.  Intrinsic and extrinsic performance limits of graphene devices on SiO2. , 2007, Nature nanotechnology.

[112]  Yasuhiko Arakawa,et al.  1.3µm InAs quantum dots grown on silicon substrate , 2010, 2010 Academic Symposium on Optoelectronics and Microelectronics Technology and 10th Chinese-Russian Symposium on Laser Physics and Laser TechnologyOptoelectronics Technology (ASOT).

[113]  J. Baumberg,et al.  Quenching of CdSe quantum dot emission, a new approach for biosensing. , 2005, Chemical communications.

[114]  Fan-Ching Chien,et al.  Revealing the spatial distribution of the site enhancement for the surface enhanced Raman scattering on the regular nanoparticle arrays. , 2009, Optics express.

[115]  Forchel,et al.  Linear polarization of photoluminescence emission and absorption in quantum-well wire structures: Experiment and theory. , 1995, Physical review. B, Condensed matter.

[116]  Adrian M. Ionescu,et al.  Nanoelectronics Research for Beyond CMOS Information Processing , 2010, Proc. IEEE.

[117]  V. Bulović,et al.  Blue luminescence from (CdS)ZnS core-shell nanocrystals. , 2004, Angewandte Chemie.

[118]  Mitra Dutta,et al.  ENVIRONMENTAL EFFECTS INFLUENCING THE VIBRATIONAL MODES OF DNA: NANOSTRUCTURES COUPLED TO BIOMOLECULES , 2008 .

[119]  Bernd Giese,et al.  Surface-enhanced Raman spectroscopic study of uracil. The influence of the surface substrate, surface potential, and pH , 2002 .

[120]  Yue Cui,et al.  Chemical functionalization of graphene enabled by phage displayed peptides. , 2010, Nano letters.

[121]  Juan Li,et al.  General approach for monitoring peptide-protein interactions based on graphene-peptide complex. , 2011, Analytical chemistry.

[122]  Igor L. Medintz,et al.  Quantum dot bioconjugates for imaging, labelling and sensing , 2005, Nature materials.

[123]  Jeremy J. Baumberg,et al.  Photoluminescence of Colloidal CdSe/ZnS Quantum Dots: The Critical Effect of Water Molecules , 2010 .

[124]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[125]  Robert Langer,et al.  Small-scale systems for in vivo drug delivery , 2003, Nature Biotechnology.

[126]  Chad A. Mirkin,et al.  Programmed Assembly of DNA Functionalized Quantum Dots , 1999 .

[127]  Lars Montelius,et al.  In vitro sliding of actin filaments labelled with single quantum dots. , 2004, Biochemical and biophysical research communications.

[128]  V. Singh,et al.  Cadmium sulfide nanowires for the window semiconductor layer in thin film CdS–CdTe solar cells , 2011, Nanotechnology.

[129]  Yue Cui,et al.  Preferential binding of peptides to graphene edges and planes. , 2011, Journal of the American Chemical Society.

[130]  D. Van Thourhout,et al.  Broadband and picosecond intraband absorption in lead based colloidal quantum dots , 2012, 2012 14th International Conference on Transparent Optical Networks (ICTON).

[131]  R. V. Van Duyne,et al.  Toward a glucose biosensor based on surface-enhanced Raman scattering. , 2003, Journal of the American Chemical Society.

[132]  B. Auld,et al.  Acoustic fields and waves in solids , 1973 .

[133]  Bai Ying,et al.  A study of DFT and surface enhanced Raman scattering in silver colloids for thymine , 2007 .

[134]  Jau Tang,et al.  Enhancement of the Purcell effect for colloidal CdSe/ZnS quantum dots coupled to silver nanowires by a metallic tip , 2012 .

[135]  L. Brus,et al.  Quantum crystallites and nonlinear optics , 1991 .

[136]  Edward B. Stokes,et al.  Quantum dots in semiconductor optoelectronic devices , 2006 .

[137]  Stefan Vogt,et al.  DNA-TiO2 nanoconjugates labeled with magnetic resonance contrast agents. , 2007, Journal of the American Chemical Society.

[138]  Xiangfeng Duan,et al.  Highly Polarized Photoluminescence and Photodetection from Single Indium Phosphide Nanowires , 2001, Science.

[139]  Xiaogang Qu,et al.  Graphene Oxide: Intrinsic Peroxidase Catalytic Activity and Its Application to Glucose Detection , 2010, Advanced materials.

[140]  Jehoshua Bruck,et al.  Graphene-based atomic-scale switches. , 2008, Nano letters.

[141]  Penmetcha K. R. Kumar,et al.  Molecular beacon aptamer fluoresces in the presence of Tat protein of HIV‐1 , 2000, Genes to cells : devoted to molecular & cellular mechanisms.

[142]  Mitra Dutta,et al.  Piezoelectricity in wurtzite polar semiconductor nanowires: A theoretical study , 2011 .

[143]  T. Hirano,et al.  Mortalin imaging in normal and cancer cells with quantum dot immuno-conjugates , 2003, Cell Research.

[144]  Jiang Long,et al.  Quantum dots in cancer therapy , 2012, Expert opinion on drug delivery.