High-voltage pH differential vanadium-hydrogen flow battery

Abstract We report a rechargeable pH differential vanadium-hydrogen (V-H 2 ) flow battery with a practical open circuit voltage of 1.93 V and a discharge voltage of 1.73 V. This value is among the highest reported values for rechargeable flow batteries with aqueous electrolytes to date. This proposed V-H 2 system demonstrates relatively high efficiencies in voltage (89%), Coulomb (85%) and energy (75%). Moreover, V-H 2 system shows a high experimental specific energy of 135.6 Wh kg −1 which is about 2.6 times higher than that of the state-of-the-art all vanadium redox flow battery. This work offers new opportunities to develop high-specific-energy energy storage technologies.

[1]  Chris Menictas,et al.  A High Energy Density Vanadium Redox Flow Battery with 3 M Vanadium Electrolyte , 2016 .

[2]  R. Simons,et al.  Water splitting in ion exchange membranes , 1985 .

[3]  M. Mench,et al.  Redox flow batteries: a review , 2011 .

[4]  C. Ponce de León,et al.  Redox flow cells for energy conversion , 2006 .

[5]  R. L. Riley,et al.  Transport properties of cellulose acetate osmotic membranes , 1965 .

[6]  Marnix Wagemaker,et al.  Unravelling Li-Ion Transport from Picoseconds to Seconds: Bulk versus Interfaces in an Argyrodite Li6PS5Cl-Li2S All-Solid-State Li-Ion Battery. , 2016, Journal of the American Chemical Society.

[7]  Guoming Weng,et al.  Three electrolyte high voltage acid-alkaline hybrid rechargeable battery , 2011 .

[8]  Guoming Weng,et al.  Hydrogen battery using neutralization energy , 2018, Nano Energy.

[9]  Dennis Y.C. Leung,et al.  A pH-differential dual-electrolyte microfluidic electrochemical cells for CO2 utilization , 2016 .

[10]  Ulrich S. Schubert,et al.  Redox‐Flow Batteries: From Metals to Organic Redox‐Active Materials , 2016, Angewandte Chemie.

[11]  U. Schubert,et al.  An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials , 2015, Nature.

[12]  G. Graff,et al.  A Stable Vanadium Redox‐Flow Battery with High Energy Density for Large‐Scale Energy Storage , 2011 .

[13]  H. Strathmann,et al.  Limiting current density and water dissociation in bipolar membranes , 1997 .

[14]  Martin D Hager,et al.  Poly(TEMPO)/Zinc Hybrid‐Flow Battery: A Novel, “Green,” High Voltage, and Safe Energy Storage System , 2016, Advanced materials.

[15]  Yoshinobu Tanaka,et al.  Bipolar Membrane Electrodialysis , 2015 .

[16]  Maria Skyllas-Kazacos,et al.  Novel vanadium chloride/polyhalide redox flow battery , 2003 .

[17]  Yan Wang,et al.  Preliminary study of high energy density Zn/Ni flow batteries , 2015 .

[18]  Yunnan Fang,et al.  A dual-electrolyte based air-breathing regenerative microfluidic fuel cell with 1.76 V open-circuit-voltage and 0.74 V water-splitting voltage , 2016 .

[19]  Dennis Y.C. Leung,et al.  A mixed-pH dual-electrolyte microfluidic aluminum–air cell with high performance , 2017 .

[20]  H. Strathmann,et al.  Theoretical and practical aspects of preparing bipolar membranes , 1993 .

[21]  C. Low,et al.  Progress in redox flow batteries, remaining challenges and their applications in energy storage , 2012 .

[22]  Dennis Y.C. Leung,et al.  A switchable pH-differential unitized regenerative fuel cell with high performance , 2016 .

[23]  Guoming Weng,et al.  Unlocking the capacity of iodide for high-energy-density zinc/polyiodide and lithium/polyiodide redox flow batteries , 2017 .

[24]  C. Gustafsson,et al.  The exonuclease activity of DNA polymerase γ is required for ligation during mitochondrial DNA replication , 2015, Nature Communications.

[25]  Maria Skyllas-Kazacos,et al.  Efficient Vanadium Redox Flow Cell , 1987 .

[26]  Nigel P. Brandon,et al.  Development of a Regenerative Hydrogen-Vanadium Fuel Cell for Energy Storage Applications , 2013 .

[27]  Ke Gong,et al.  A multiple ion-exchange membrane design for redox flow batteries , 2014 .

[28]  Jose Giner,et al.  The Sealed Nickel‐Hydrogen Secondary Cell , 1975 .

[29]  Arumugam Manthiram,et al.  Hybrid and Aqueous Lithium‐Air Batteries , 2015 .

[30]  Jean-Christophe Remigy,et al.  Treatment of textile dye effluent using a polyamide-based nanofiltration membrane , 2002 .

[31]  Huamin Zhang,et al.  High-performance porous uncharged membranes for vanadium flow battery applications created by tuning cohesive and swelling forces , 2016 .

[32]  D. Psaltis,et al.  A membrane-less electrolyzer for hydrogen production across the pH scale , 2015 .

[33]  Matthias Wessling,et al.  A polyelectrolyte membrane-based vanadium/air redox flow battery , 2011 .

[34]  Qinghua Liu,et al.  High Performance Vanadium Redox Flow Batteries with Optimized Electrode Configuration and Membrane Selection , 2012 .

[35]  I. V. Grigorieva,et al.  Precise and Ultrafast Molecular Sieving Through Graphene Oxide Membranes , 2014, Science.

[36]  Michael P. Marshak,et al.  A metal-free organic–inorganic aqueous flow battery , 2014, Nature.

[37]  P. He,et al.  The development of a new type of rechargeable batteries based on hybrid electrolytes. , 2010, ChemSusChem.

[38]  J. Balster Membrane module and process development for monopolar and bipolar membrane electrodialysis , 2006 .

[39]  Fikile R. Brushett,et al.  Air-Breathing Aqueous Sulfur Flow Battery for Ultralow-Cost Long-Duration Electrical Storage , 2017 .

[40]  C. V. Li,et al.  Electrochemically Enabled Sustainability: Devices, Materials and Mechanisms for Energy Conversion , 2014 .

[41]  T. Nguyen,et al.  A Study of Alkaline-Based H2-Br2 and H2-I2 Reversible Fuel Cells , 2016 .

[42]  J. Zhong,et al.  Investigations of High Voltage Vanadium-Metal Hydride Flow Battery toward kWh Scale Storage with 100 cm2 Electrodes , 2016 .

[43]  Guoming Weng,et al.  High Voltage Vanadium-Metal Hydride Rechargeable Semi-Flow Battery , 2013 .

[44]  T. Zhao,et al.  An aqueous alkaline battery consisting of inexpensive all-iron redox chemistries for large-scale energy storage , 2018 .

[45]  G. Soloveichik Flow Batteries: Current Status and Trends. , 2015, Chemical reviews.

[46]  Frank C. Walsh,et al.  Characterization of a zinc–cerium flow battery , 2011 .

[47]  Ke Gong,et al.  A zinc–iron redox-flow battery under $100 per kW h of system capital cost , 2015 .