Proximity graphs inside large weighted graphs

Given a large weighted graph G = (V;E) and a subset U of V , we de¯ne several graphs with vertex set U in which two vertices are adjacent if they satisfy some prescribed proximity rule. These rules use the shortest path distance in G and generalize the proximity rules that generate some of the most common proximity graphs in Euclidean spaces. We prove basic properties of the de¯ned graphs and provide algorithms for their computation.

[1]  Rom Pinchasi,et al.  On locally Delaunay geometric graphs , 2004, SCG '04.

[2]  Yaron Ostrovsky-Berman The transportation metric and related problems , 2005, Inf. Process. Lett..

[3]  Atsuyuki Okabe,et al.  Generalized network Voronoi diagrams: Concepts, computational methods, and applications , 2008, Int. J. Geogr. Inf. Sci..

[4]  Arthur Getis,et al.  Models of spatial processes : an approach to the study of point, line, and area patterns , 1979 .

[5]  Sathish Govindarajan,et al.  On Computing Optimal Locally Gabriel Graphs , 2011, ArXiv.

[6]  Godfried T. Toussaint,et al.  Relative neighborhood graphs and their relatives , 1992, Proc. IEEE.

[7]  Alexander Wolff,et al.  Constructing Optimal Highways , 2007, CATS.

[8]  Chak-Kuen Wong,et al.  A faster approximation algorithm for the Steiner problem in graphs , 1986, Acta Informatica.

[9]  Xiang-Yang Li,et al.  Proximity Structures for Geometric Graphs , 2003, Int. J. Comput. Geom. Appl..

[10]  Bernard Chazelle,et al.  A minimum spanning tree algorithm with inverse-Ackermann type complexity , 2000, JACM.

[11]  Timothy M. Chan More algorithms for all-pairs shortest paths in weighted graphs , 2007, STOC '07.

[12]  Rolf Klein,et al.  Voronoi Diagram for services neighboring a highway , 2003, Inf. Process. Lett..

[13]  Hanan Samet,et al.  Foundations of multidimensional and metric data structures , 2006, Morgan Kaufmann series in data management systems.

[14]  T. S. Michael,et al.  Sphere of influence graphs in general metric spaces , 1999 .

[15]  Robert E. Tarjan,et al.  Fibonacci heaps and their uses in improved network optimization algorithms , 1984, JACM.

[16]  Christos Faloutsos,et al.  Fast discovery of connection subgraphs , 2004, KDD.

[17]  Seth Pettie,et al.  A Shortest Path Algorithm for Real-Weighted Undirected Graphs , 2005, SIAM J. Comput..

[18]  Harald Trost Computational Morphology , 2003 .

[19]  Seth Pettie,et al.  An optimal minimum spanning tree algorithm , 2000, JACM.

[20]  Panos M. Pardalos,et al.  Handbook of Massive Data Sets , 2002, Massive Computing.

[21]  Jerzy W. Jaromczyk,et al.  A note on relative neighborhood graphs , 1987, SCG '87.

[22]  Martin Erwig,et al.  The graph Voronoi diagram with applications , 2000, Networks.

[23]  Yehuda Koren,et al.  Measuring and extracting proximity in networks , 2006, KDD '06.

[24]  Rolf Klein,et al.  The weighted farthest color Voronoi diagram on trees and graphs , 2004, Comput. Geom..

[25]  Frank Harary,et al.  Abstract sphere-of-influence graphs , 1993 .

[26]  Atsuo Suzuki,et al.  THE k TH NEAREST NETWORK VORONOI DIAGRAM AND ITS APPLICATION TO DISTRICTING PROBLEM OF AMBULANCE SYSTEMS , 2005 .