Genetic algorithms for control of power converters

This paper evaluates genetic algorithms (GAs) as a new nonlinear technique for the control of power converters. Genetic algorithms are a class of parallel processing learning techniques. They are used to optimize power converter control laws relative to a performance index. An example using a full-bridge topology verifies the usefulness of this technique.<<ETX>>

[1]  J. M. Noworolski,et al.  Generalized averaging method for power conversion circuits , 1990, 21st Annual IEEE Conference on Power Electronics Specialists.

[2]  Deepak Divan,et al.  Optimal discrete pulse modulation waveforms for resonant link inverters , 1988, PESC '88 Record., 19th Annual IEEE Power Electronics Specialists Conference.

[3]  Tanja Urbancic,et al.  Genetic algorithms in controller design and tuning , 1993, IEEE Trans. Syst. Man Cybern..

[4]  Robert L. Steigerwald A comparison of half-bridge resonant converter topologies , 1987 .

[5]  F. Lee,et al.  Resonant power processors. II - Methods of control , 1984 .

[6]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[7]  S Forrest,et al.  Genetic algorithms , 1996, CSUR.