Unified dark fluid with constant adiabatic sound speed and cosmic constraints

As is known above 90% of the energy content in Universe is made of unknown dark component. Usually this dark fluid is separated into two parts: dark matter and dark energy. However, it may be a mixture of these two energy components, or just one exotic unknown fluid. This property is dubbed as dark degeneracy. With this motivation, in this paper, a unified dark fluid having constant adiabatic sound speed $c_s^2=\alpha$, which is in the range $[0,1]$, is studied. At first, via the energy conservation equation, its energy density, $\rho_d/\rho_{d0}=(1-B_s)+B_s a^{-3(1+\alpha)}$ where $B_s$ is related to integration constant from energy conservation equation as another model parameter, is presented. Then by using Markov Chain Monte Carlo method with currently available cosmic observational data sets which include type Ia supernova Union 2, baryon acoustic oscillation and WMAP 7-year data of cosmic background radiation, we show that small values of $\alpha$ are favored in this unified dark fluid model. Furthermore, we show that smaller values of $\alpha<10^{-5}$ are required to match matter (baryon) power spectrum from SDSS DR7.

[1]  Gauge ready formulation of the cosmological kinetic theory in generalized gravity theories , 2001, astro-ph/0102005.

[2]  Degeneracy inherent in the observational determination of the dark energy equation of state , 2002, astro-ph/0203137.

[3]  Lixin Xu,et al.  Constraints on the generalized Chaplygin gas model including gamma-ray bursts via a Markov Chain Monte Carlo approach , 2010, 1009.6059.

[4]  Lixin Xu,et al.  Cosmological constraints on generalized Chaplygin gas model: Markov Chain Monte Carlo approach , 2010, 1004.3344.

[5]  Quintessence or Phoenix? , 2002, astro-ph/0203225.

[6]  Roy Maartens,et al.  Large-scale instability in interacting dark energy and dark matter fluids , 2008 .

[7]  Shinji Tsujikawa,et al.  Dynamics of dark energy , 2006 .

[8]  M. S. Burns,et al.  SPECTRA AND HUBBLE SPACE TELESCOPE LIGHT CURVES OF SIX TYPE Ia SUPERNOVAE AT 0.511 < z < 1.12 AND THE UNION2 COMPILATION , 2010, 1004.1711.

[9]  J. Lesgourgues,et al.  Cosmological parameters from large scale structure - geometric versus shape information , 2010, 1003.3999.

[10]  Stefano Casertano,et al.  A REDETERMINATION OF THE HUBBLE CONSTANT WITH THE HUBBLE SPACE TELESCOPE FROM A DIFFERENTIAL DISTANCE LADDER , 2009, 0905.0695.

[11]  Yuting Wang,et al.  Cosmic constraint to DGP brane model: Geometrical and dynamical perspectives , 2010, 1006.4889.

[12]  S. Burles,et al.  Big Bang Nucleosynthesis Predictions for Precision Cosmology , 2000, astro-ph/0010171.

[13]  H. Noh,et al.  Observational constraints on a unified dark matter and dark energy model based on generalized Chaplygin gas , 2009, 0910.4202.

[14]  T. Kitching,et al.  Measuring unified dark matter with 3D cosmic shear , 2010, 1002.4740.

[15]  S. Matarrese,et al.  Weak lensing signal in unified dark matter models , 2009, 0902.4204.

[16]  A. Lewis,et al.  Cosmological parameters from CMB and other data: A Monte Carlo approach , 2002, astro-ph/0205436.

[17]  Structure of structure formation theories , 1998, astro-ph/9809368.

[18]  Jianbo Lu,et al.  Observational constraint on generalized Chaplygin gas model , 2009, 1004.3365.

[19]  P. Peebles,et al.  The Cosmological Constant and Dark Energy , 2002, astro-ph/0207347.

[20]  Wayne Hu,et al.  Baryonic Features in the Matter Transfer Function , 1997, astro-ph/9709112.

[21]  A. G. Alexei,et al.  OBSERVATIONAL EVIDENCE FROM SUPERNOVAE FOR AN ACCELERATING UNIVERSE AND A COSMOLOGICAL CONSTANT , 1998 .

[22]  ΛαDM: observational constraints on unified dark matter with constant speed of sound , 2007, astro-ph/0702423.

[23]  Steven Weinberg,et al.  The Cosmological Constant Problem , 1989 .

[24]  Generalized Chaplygin gas model: Constraints from Hubble parameter versus redshift data , 2006, gr-qc/0612055.

[25]  M. Phillips,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[26]  Hongwei Yu,et al.  Testing the (generalized) Chaplygin gas model with the lookback time-redshift data , 2009, 0908.3415.

[27]  J. Cervantes-Cota,et al.  Dark degeneracy and interacting cosmic components , 2011, 1108.2457.

[28]  M. Kunz Degeneracy between the dark components resulting from the fact that gravity only measures the total energy-momentum tensor , 2009 .

[29]  Inflation, dark matter, and dark energy in the string landscape. , 2006, Physical review letters.

[30]  L. A. Urena-L'opez,et al.  Cosmological dark fluid from five-dimensional vacuum , 2011, 1107.0345.

[31]  T. Padmanabhan Cosmological constant—the weight of the vacuum , 2002, hep-th/0212290.

[32]  S. Carroll The Cosmological Constant , 2000, Living reviews in relativity.

[33]  Yuting Wang,et al.  Observational constraints to Ricci dark energy model by using: SN, BAO, OHD, fgas data sets , 2010, 1006.0296.

[34]  Paul J. Steinhardt,et al.  Essentials of k essence , 2000, astro-ph/0006373.

[35]  Lixin Xu,et al.  CMB Temperature and Matter Power Spectrum in a Decay Vacuum Dark Energy Model , 2011 .

[36]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[37]  R. Ellis,et al.  Measurements of $\Omega$ and $\Lambda$ from 42 high redshift supernovae , 1998, astro-ph/9812133.

[38]  A. Starobinsky,et al.  The Case for a positive cosmological Lambda term , 1999, astro-ph/9904398.

[39]  Jayaram N. Chengalur,et al.  Thick gas discs in faint dwarf galaxies , 2010, 1002.4474.

[40]  O. Bertolami,et al.  Generalized Chaplygin Gas, Accelerated Expansion and Dark Energy-Matter Unification , 2002, gr-qc/0202064.

[41]  C. Martins,et al.  Linear and nonlinear instabilities in unified dark energy models , 2007, 0711.4288.

[42]  P. Avelino,et al.  Dynamics of perfect fluid unified dark energy models , 2005, astro-ph/0507075.

[43]  Alexander S. Szalay,et al.  Baryon Acoustic Oscillations in the Sloan Digital Sky Survey Data Release 7 Galaxy Sample , 2009, 0907.1660.

[44]  Edmund Bertschinger,et al.  Cosmological Perturbation Theory in the Synchronous and Conformal Newtonian Gauges , 1995 .