Anaplastic astrocytoma with piloid features, a novel molecular class of IDH wildtype glioma with recurrent MAPK pathway, CDKN2A/B and ATRX alterations

[1]  Till Acker,et al.  DNA methylation-based classification of central nervous system tumours , 2018, Nature.

[2]  C. Sarkar,et al.  Genetic alterations related to BRAF‐FGFR genes and dysregulated MAPK/ERK/mTOR signaling in adult pilocytic astrocytoma , 2017, Brain pathology.

[3]  Heather Geiger,et al.  ATRX is a regulator of therapy induced senescence in human cells , 2017, Nature Communications.

[4]  Martin Sill,et al.  DNA methylation-based classification and grading system for meningioma: a multicentre, retrospective analysis. , 2017, The Lancet. Oncology.

[5]  Jennie W. Taylor,et al.  Adult infiltrating gliomas with WHO 2016 integrated diagnosis: additional prognostic roles of ATRX and TERT , 2017, Acta Neuropathologica.

[6]  Guido Reifenberger,et al.  Molecular Diagnostics of Gliomas Using Next Generation Sequencing of a Glioma‐Tailored Gene Panel , 2017, Brain pathology.

[7]  David T. W. Jones,et al.  Global epigenetic profiling identifies methylation subgroups associated with recurrence-free survival in meningioma , 2017, Acta Neuropathologica.

[8]  K. Stepien,et al.  Heterogeneity of histopathological presentation of pilocytic astrocytoma - diagnostic pitfalls. A review. , 2016, Folia neuropathologica.

[9]  R. Wiest,et al.  Adult anaplastic pilocytic astrocytoma – a diagnostic challenge? A case series and literature review , 2016, Clinical Neurology and Neurosurgery.

[10]  G. Tabatabai,et al.  ATRX immunostaining predicts IDH and H3F3A status in gliomas , 2016, Acta Neuropathologica Communications.

[11]  V. P. Collins,et al.  Molecular characterization of disseminated pilocytic astrocytomas , 2016, Neuropathology and applied neurobiology.

[12]  Roland Eils,et al.  New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs , 2016, Cell.

[13]  Volker Hovestadt,et al.  Methylation-based classification of benign and malignant peripheral nerve sheath tumors , 2016, Acta Neuropathologica.

[14]  Steven J. M. Jones,et al.  Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of Progression in Diffuse Glioma , 2016, Cell.

[15]  Stefan M. Pfister,et al.  Next-generation sequencing in routine brain tumor diagnostics enables an integrated diagnosis and identifies actionable targets , 2016, Acta Neuropathologica.

[16]  Chibo Hong,et al.  DNA Methylation and Somatic Mutations Converge on the Cell Cycle and Define Similar Evolutionary Histories in Brain Tumors. , 2015, Cancer cell.

[17]  Volker Hovestadt,et al.  Adult IDH wild type astrocytomas biologically and clinically resolve into other tumor entities , 2015, Acta Neuropathologica.

[18]  Gary D Bader,et al.  Molecular Classification of Ependymal Tumors across All CNS Compartments, Histopathological Grades, and Age Groups. , 2015, Cancer cell.

[19]  David T. W. Jones,et al.  Pilocytic astrocytoma: pathology, molecular mechanisms and markers , 2015, Acta Neuropathologica.

[20]  P. Mckelvie,et al.  Anaplastic pilocytic astrocytoma , 2014, Journal of Clinical Neuroscience.

[21]  Rafael A. Irizarry,et al.  Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays , 2014, Bioinform..

[22]  J. Biegel,et al.  Diagnostic application of high resolution single nucleotide polymorphism array analysis for children with brain tumors. , 2014, Cancer genetics.

[23]  David T. W. Jones,et al.  Paediatric and adult glioblastoma: multiform (epi)genomic culprits emerge , 2014, Nature Reviews Cancer.

[24]  David T. W. Jones,et al.  ATRX and IDH1-R132H immunohistochemistry with subsequent copy number analysis and IDH sequencing as a basis for an “integrated” diagnostic approach for adult astrocytoma, oligodendroglioma and glioblastoma , 2014, Acta Neuropathologica.

[25]  Dongfang Li,et al.  Genome sequencing of 161 Mycobacterium tuberculosis isolates from China identifies genes and intergenic regions associated with drug resistance , 2013, Nature Genetics.

[26]  Roland Eils,et al.  Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma , 2013, Nature Genetics.

[27]  Trimèche Mounir,et al.  Pilocytic astrocytoma: A retrospective study of 32 cases , 2013, Clinical Neurology and Neurosurgery.

[28]  Volker Hovestadt,et al.  Robust molecular subgrouping and copy-number profiling of medulloblastoma from small amounts of archival tumour material using high-density DNA methylation arrays , 2013, Acta Neuropathologica.

[29]  Heather L. Mulder,et al.  Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas , 2013, Nature Genetics.

[30]  Gary L. Gallia,et al.  TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal , 2013, Proceedings of the National Academy of Sciences.

[31]  Christopher A. Miller,et al.  Somatic neurofibromatosis type 1 (NF1) inactivation characterizes NF1-associated pilocytic astrocytoma , 2013, Genome research.

[32]  G. Fuller,et al.  Moving toward molecular classification of diffuse gliomas in adults , 2012, Neurology.

[33]  David T. W. Jones,et al.  Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. , 2012, Cancer cell.

[34]  G. Reifenberger,et al.  Predictive impact of MGMT promoter methylation in glioblastoma of the elderly , 2012, International journal of cancer.

[35]  D. Brat,et al.  Transforming Fusions of FGFR and TACC Genes in Human Glioblastoma , 2012, Science.

[36]  M. Sanson,et al.  Comparative assessment of 5 methods (methylation‐specific polymerase chain reaction, methylight, pyrosequencing, methylation‐sensitive high‐resolution melting, and immunohistochemistry) to analyze O6‐methylguanine‐DNA‐methyltranferase in a series of 100 glioblastoma patients , 2012, Cancer.

[37]  M. Delorenzi,et al.  MGMT methylation analysis of glioblastoma on the Infinium methylation BeadChip identifies two distinct CpG regions associated with gene silencing and outcome, yielding a prediction model for comparisons across datasets, tumor grades, and CIMP-status , 2012, Acta Neuropathologica.

[38]  P. Cassoni,et al.  MGMT promoter hypermethylation and its associations with genetic alterations in a series of 350 brain tumors , 2012, Journal of Neuro-Oncology.

[39]  David T. W. Jones,et al.  MAPK pathway activation in pilocytic astrocytoma , 2011, Cellular and Molecular Life Sciences.

[40]  J. Gerss,et al.  BRAF‐KIAA1549 fusion transcripts are less frequent in pilocytic astrocytomas diagnosed in adults , 2011, Neuropathology and applied neurobiology.

[41]  G. Reifenberger,et al.  Promoter methylation and expression of MGMT and the DNA mismatch repair genes MLH1, MSH2, MSH6 and PMS2 in paired primary and recurrent glioblastomas , 2011, International journal of cancer.

[42]  N. Alon,et al.  BRAF-KIAA1549 Fusion Predicts Better Clinical Outcome in Pediatric Low-Grade Astrocytoma , 2011, Clinical Cancer Research.

[43]  Süleyman Cenk Sahinalp,et al.  deFuse: An Algorithm for Gene Fusion Discovery in Tumor RNA-Seq Data , 2011, PLoS Comput. Biol..

[44]  G. Nikkhah,et al.  BRAF Activation Induces Transformation and Then Senescence in Human Neural Stem Cells: A Pilocytic Astrocytoma Model , 2011, Clinical Cancer Research.

[45]  J. Sarkaria,et al.  PI3K/AKT pathway alterations are associated with clinically aggressive and histologically anaplastic subsets of pilocytic astrocytoma , 2011, Acta Neuropathologica.

[46]  P. Wesseling,et al.  MAPK pathway activation through BRAF gene fusion in pilocytic astrocytomas; a novel oncogenic fusion gene with diagnostic, prognostic, and therapeutic potential , 2010, The Journal of pathology.

[47]  H. Hakonarson,et al.  ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data , 2010, Nucleic acids research.

[48]  M. J. van den Bent,et al.  LABORATORY INVESTIGATION- HUMAN/ANIMAL TISSUE , 2022 .

[49]  B. Scheithauer,et al.  Anaplasia in Pilocytic Astrocytoma Predicts Aggressive Behavior , 2010, The American journal of surgical pathology.

[50]  A. Azad,et al.  Primary anaplastic pilocytic astrocytoma , 2009, Journal of Clinical Neuroscience.

[51]  D. Pearson,et al.  Oncogenic RAF1 rearrangement and a novel BRAF mutation as alternatives to KIAA1549:BRAF fusion in activating the MAPK pathway in pilocytic astrocytoma , 2009, Oncogene.

[52]  Albert Becker,et al.  Frequent recurrence and progression in pilocytic astrocytoma in adults , 2007, Cancer.

[53]  A. Hoischen,et al.  Frequent loss of chromosome 9, homozygous CDKN2A/p14ARF/CDKN2B deletion and low TSC1 mRNA expression in pleomorphic xanthoastrocytomas , 2007, Oncogene.

[54]  Y. Yonekawa,et al.  A population-based study of the incidence and survival rates in patients with pilocytic astrocytoma. , 2003, Journal of neurosurgery.

[55]  Y. Katayama,et al.  Promoter Hypermethylation of the DNA Repair Gene O6‐Methylguanine‐DNA Methyltransferase is an Independent Predictor of Shortened Progression Free Survival in Patients with Low‐grade Diffuse Astrocytomas , 2003, Brain pathology.

[56]  C. Alpers,et al.  Persistence and late malignant transformation of childhood cerebellar astrocytoma. Case report. , 1982, Journal of neurosurgery.