Solving Large-Scale Robust Stability Problems by Exploiting the Parallel Structure of Polya's Theorem
暂无分享,去创建一个
Matthew M. Peet | Yulia Peet | Reza Kamyar | Y. Peet | M. Peet | R. Kamyar
[1] Michael L. Overton,et al. Primal-Dual Interior-Point Methods for Semidefinite Programming: Convergence Rates, Stability and Numerical Results , 1998, SIAM J. Optim..
[2] Jos F. Sturm,et al. A Matlab toolbox for optimization over symmetric cones , 1999 .
[3] E. Joffrin,et al. A control-oriented model of the current profile in tokamak plasma , 2007 .
[4] Masakazu Kojima,et al. Generalized Lagrangian Duals and Sums of Squares Relaxations of Sparse Polynomial Optimization Problems , 2005, SIAM J. Optim..
[5] Robert J. Vanderbei,et al. An Interior-Point Method for Semidefinite Programming , 1996, SIAM J. Optim..
[6] H. James Hoover,et al. Limits to Parallel Computation: P-Completeness Theory , 1995 .
[7] Pedro Luis Dias Peres,et al. A less conservative LMI condition for the robust stability of discrete-time uncertain systems , 2001, Syst. Control. Lett..
[8] Masakazu Kojima,et al. SDPARA: SemiDefinite Programming Algorithm paRAllel version , 2003, Parallel Comput..
[9] A. Antoulas,et al. A Survey of Model Reduction by Balanced Truncation and Some New Results , 2004 .
[10] R. Jackson. Inequalities , 2007, Algebra for Parents.
[11] Arkadi Nemirovski,et al. Several NP-hard problems arising in robust stability analysis , 1993, Math. Control. Signals Syst..
[12] Laxmikant V. Kale,et al. The Charm Parallel Programming Language and System: Part I - Description of Language Features , 1994 .
[13] P. Tsiotras,et al. Multi-Parameter Dependent Lyapunov Functions for the Stability Analysis of Parameter-Dependent LTI Systems , 2005, Proceedings of the 2005 IEEE International Symposium on, Mediterrean Conference on Control and Automation Intelligent Control, 2005..
[14] Aaas News,et al. Book Reviews , 1893, Buffalo Medical and Surgical Journal.
[15] P. Parrilo,et al. Symmetry groups, semidefinite programs, and sums of squares , 2002, math/0211450.
[16] Ricardo C. L. F. Oliveira,et al. Parameter-Dependent LMIs in Robust Analysis: Characterization of Homogeneous Polynomially Parameter-Dependent Solutions Via LMI Relaxations , 2007, IEEE Transactions on Automatic Control.
[17] J. Doyle,et al. Essentials of Robust Control , 1997 .
[18] J. Doyle,et al. Quadratic stability with real and complex perturbations , 1990 .
[19] Madhu V. Nayakkankuppam,et al. Solving large-scale semidefinite programs in parallel , 2007, Math. Program..
[20] Didier Henrion,et al. GloptiPoly: Global optimization over polynomials with Matlab and SeDuMi , 2003, TOMS.
[21] Graziano Chesi,et al. Polynomially parameter-dependent Lyapunov functions for robust stability of polytopic systems: an LMI approach , 2005, IEEE Transactions on Automatic Control.
[22] G. Stengle. A nullstellensatz and a positivstellensatz in semialgebraic geometry , 1974 .
[23] W. Walker,et al. Mpi: a Standard Message Passing Interface 1 Mpi: a Standard Message Passing Interface , 1996 .
[24] Pierre-Alexandre Bliman,et al. A Convex Approach to Robust Stability for Linear Systems with Uncertain Scalar Parameters , 2003, SIAM J. Control. Optim..
[25] Carsten W. Scherer,et al. Matrix Sum-of-Squares Relaxations for Robust Semi-Definite Programs , 2006, Math. Program..
[26] S. J. Benson,et al. DSDP3: dual scaling algorithm for general positive semidefinite programming. , 2001 .
[27] P. Parrilo. Exploiting Algebraic Structure in Sum of Squares Programs , 2005 .
[28] B. Buchberger,et al. Gröbner bases and applications , 1998 .
[29] Pierre-Alexandre Bliman,et al. An existence result for polynomial solutions of parameter-dependent LMIs , 2004, Syst. Control. Lett..
[30] G. Amdhal,et al. Validity of the single processor approach to achieving large scale computing capabilities , 1967, AFIPS '67 (Spring).
[31] D. Kamenetsky. Symmetry Groups , 2003 .
[32] Pedro L. D. Peres,et al. An LMI approach to compute robust stability domains for uncertain linear systems , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).
[33] P. Gahinet,et al. A linear matrix inequality approach to H∞ control , 1994 .
[34] Xiong Zhang,et al. Solving Large-Scale Sparse Semidefinite Programs for Combinatorial Optimization , 1999, SIAM J. Optim..
[35] Fernando Paganini,et al. A Course in Robust Control Theory , 2000 .
[36] Brian Borchers,et al. Implementation of a primal–dual method for SDP on a shared memory parallel architecture , 2007, Comput. Optim. Appl..
[37] Matthew M Peet,et al. A parallel-computing solution for optimization of polynomials , 2010, Proceedings of the 2010 American Control Conference.
[38] Donal O'Shea,et al. Ideals, varieties, and algorithms - an introduction to computational algebraic geometry and commutative algebra (2. ed.) , 1997, Undergraduate texts in mathematics.
[39] Pablo A. Parrilo,et al. Introducing SOSTOOLS: a general purpose sum of squares programming solver , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..
[40] Masakazu Muramatsu,et al. SparsePOP: a Sparse Semidefinite Programming Relaxation of Polynomial Optimization Problems , 2005 .
[41] Andrew Bartlett,et al. Robust Control: Systems with Uncertain Physical Parameters , 1993 .
[42] Ricardo C. L. F. Oliveira,et al. Robust LMIs with parameters in multi-simplex: Existence of solutions and applications , 2008, 2008 47th IEEE Conference on Decision and Control.
[43] Shankar P. Bhattacharyya,et al. Robust Control: The Parametric Approach , 1995 .
[44] Steven J. Deitz,et al. High-level programming language abstractions for advanced and dynamic parallel computations , 2005 .
[45] Masakazu Kojima,et al. Exploiting sparsity in primal-dual interior-point methods for semidefinite programming , 1997, Math. Program..
[46] P. Peres,et al. Stability of polytopes of matrices via affine parameter-dependent lyapunov functions : Asymptotically exact LMI conditions , 2005 .
[47] Matthew M. Peet,et al. Exponentially Stable Nonlinear Systems Have Polynomial Lyapunov Functions on Bounded Regions , 2007, IEEE Transactions on Automatic Control.
[48] BorchersBrian,et al. Implementation of a primaldual method for SDP on a shared memory parallel architecture , 2007 .
[49] Franz Rendl,et al. A Spectral Bundle Method for Semidefinite Programming , 1999, SIAM J. Optim..
[50] John N. Tsitsiklis,et al. A survey of computational complexity results in systems and control , 2000, Autom..
[51] Victoria Powers,et al. A quantitative Pólya's Theorem with zeros , 2009, J. Symb. Comput..
[52] Kartik Krishnan Sivaramakrishnan,et al. A parallel interior point decomposition algorithm for block angular semidefinite programs , 2010, Comput. Optim. Appl..
[53] David J. N. Limebeer,et al. Linear Robust Control , 1994 .
[54] P. Gahinet,et al. Affine parameter-dependent Lyapunov functions and real parametric uncertainty , 1996, IEEE Trans. Autom. Control..
[55] Renato D. C. Monteiro,et al. Primal-Dual Path-Following Algorithms for Semidefinite Programming , 1997, SIAM J. Optim..
[56] Arkadi Nemirovski,et al. Robust Convex Optimization , 1998, Math. Oper. Res..
[57] Edward R. Scheinerman. Mathematics: A Discrete Introduction , 2000 .
[58] SivaramakrishnanKartik Krishnan. A parallel interior point decomposition algorithm for block angular semidefinite programs , 2010 .