Block meshes: Topologically robust shape modeling with graphs embedded on 3-manifolds

We present a unifying framework to represent all topologically distinct shapes in 3D, from solids to surfaces and curves. This framework can be used to build a universal and modular system for the visualization, design, and construction of shapes, amenable to a broad range of science, engineering, architecture, and design applications. Our unifying framework uses 3-space immersions of higher-dimensional-manifolds, which facilitate our goal of topological robustness.We demonstrate that a specific type of orientable 2-manifold mesh, which we call a CMM-pattern coverable mesh, can be used to represent structures in higher-dimensional manifolds, which we call block meshes. Moreover, the framework includes a set of operations that can preserve CMM-pattern coverability. In this sense, CMM-pattern-coverable meshes provide an algebraization of shape processing that (1) supports a generalized mesh representation for blocks that may not necessarily be solids, and (2) requires a minimal set of operations that transform CMM-pattern-coverable meshes to CMM-pattern-coverable meshes. Graphical abstractDisplay Omitted HighlightsShape algebra describes structures in higher-dimensional manifolds with minimum operations.Our unified framework represents all topologically distinct shapes in 3D, from solids to surfaces and curves.The algebra models shapes via simpler, more powerful and topologically robust algorithms.

[1]  Hanan Samet,et al.  Multiresolution Tetrahedral Meshes: An Analysis and a Comparison , 2002, Shape Modeling International.

[2]  Karl J. Niklas The Algorithmic Beauty of Plants. The Virtual Laboratory.Przemyslaw Prusinkiewicz , Aristid Lindenmayer , James S. Hanan , F. David Fracchia , Deborah R. Fowler , Martin J. M. de Boer, Lynn Mercer , 1996 .

[3]  Carlo H. Séquin,et al.  Torus Immersions and Transformations , 2011 .

[4]  Robert Jan. Williams,et al.  The Geometrical Foundation of Natural Structure: A Source Book of Design , 1979 .

[5]  Jarek Rossignac,et al.  Grow & fold: compression of tetrahedral meshes , 1999, SMA '99.

[6]  Jessica K. Hodgins,et al.  Graphical modeling and animation of brittle fracture , 1999, SIGGRAPH.

[7]  Marc Alexa,et al.  Computing and Rendering Point Set Surfaces , 2003, IEEE Trans. Vis. Comput. Graph..

[8]  J. Conway,et al.  The Symmetries of Things , 2008 .

[9]  Hélio Lopes,et al.  Structural operators for modeling 3-manifolds , 1997, SMA '97.

[10]  Ergun Akleman,et al.  Pattern mapping with quad-pattern-coverable quad-meshes , 2012, Comput. Graph..

[11]  Kenneth I. Joy,et al.  Data Structures for Multiresolution Representation of Unstructured Meshes , 2003 .

[12]  G. C. Shephard,et al.  Satins and Twills: An Introduction to the Geometry of Fabrics , 1980 .

[13]  D. Bommes,et al.  Mixed-integer quadrangulation , 2009, SIGGRAPH 2009.

[14]  John W. Morgan,et al.  Ricci Flow and Geometrization of 3-Manifolds , 2010 .

[15]  Carlo H. Séquin,et al.  Functional optimization for fair surface design , 1992, SIGGRAPH.

[16]  Peter Schröder,et al.  Building your own DEC at home , 2005, SIGGRAPH Courses.

[17]  Jonathan L. Gross,et al.  Topological Graph Theory , 1987, Handbook of Graph Theory.

[18]  Rao V. Garimella,et al.  MSTK - A Flexible Infrastructure Library for Developing Mesh Based Applications , 2004, IMR.

[19]  James F. O'Brien,et al.  Graphical modeling and animation of ductile fracture , 2002, SIGGRAPH '02.

[20]  Ergun Akleman,et al.  Band decomposition of 2-manifold meshes for physical construction of large structures , 2011, SIGGRAPH Talks.

[21]  Marston D. E. Conder,et al.  Regular t-balanced Cayley maps , 2007, J. Comb. Theory, Ser. B.

[22]  Renato Pajarola,et al.  Implant sprays: compression of progressive tetrahedral mesh connectivity , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[23]  William Jaco,et al.  Lectures on three-manifold topology , 1980 .

[24]  Ergun Akleman,et al.  A prototype system for robust, interactive and user-friendly modeling of orientable 2-manifold meshes , 2002, Proceedings SMI. Shape Modeling International 2002.

[25]  E. Catmull,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[26]  Hans-Peter Seidel,et al.  Directed Edges - A Scalable Representation for Triangle Meshes , 1998, J. Graphics, GPU, & Game Tools.

[27]  Sven Havemann,et al.  Generative parametric design of Gothic window tracery , 2004, Proceedings Shape Modeling Applications, 2004..

[28]  R. Schwarzenberger The 17 plane symmetry groups , 1974, The Mathematical Gazette.

[29]  H. Masuda Topological operators and Boolean operations for complex-based nonmanifold geometric models , 1993, Comput. Aided Des..

[30]  Marston D. E. Conder,et al.  Determination of all Regular Maps of Small Genus , 2001, J. Comb. Theory, Ser. B.

[31]  Przemyslaw Prusinkiewicz,et al.  The Algorithmic Beauty of Plants , 1990, The Virtual Laboratory.

[32]  Hong Qin,et al.  A new solid subdivision scheme based on box splines , 2002, SMA '02.

[33]  Erik Brisson,et al.  Representing geometric structures ind dimensions: Topology and order , 1993, Discret. Comput. Geom..

[34]  Leila De Floriani,et al.  Data structures for simplicial complexes: an analysis and a comparison , 2005, SGP '05.

[35]  Ergun Akleman,et al.  Single-cycle plain-woven objects , 2010, 2010 Shape Modeling International Conference.

[36]  Ergun Akleman,et al.  A new paradigm for changing topology during subdivision modeling , 2000, Proceedings the Eighth Pacific Conference on Computer Graphics and Applications.

[37]  Konrad Polthier,et al.  QuadCover ‐ Surface Parameterization using Branched Coverings , 2007, Comput. Graph. Forum.

[38]  Nick D. Gilbert,et al.  Knots and surfaces , 1994 .

[39]  Ergun Akleman,et al.  A New Corner cutting Scheme with tension and Handle-Face Reconstruction , 2001, Int. J. Shape Model..

[40]  Chandrajit L. Bajaj,et al.  A subdivision scheme for hexahedral meshes , 2002, The Visual Computer.

[41]  Thomas J. Peters,et al.  Computational Topology for Geometric Design and Molecular Design , 2005 .

[42]  Leila De Floriani,et al.  A scalable data structure for three-dimensional non-manifold objects , 2003, Symposium on Geometry Processing.

[43]  Valerio Pascucci,et al.  Multi-resolution Modeling, Visualization and Streaming of Volume Meshes , 2004, Eurographics.

[44]  B. Barsky,et al.  An Introduction to Splines for Use in Computer Graphics and Geometric Modeling , 1987 .

[45]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[46]  Alyn P. Rockwood,et al.  Topological design of sculptured surfaces , 1992, SIGGRAPH.

[47]  Peter Schröder,et al.  A unified framework for primal/dual quadrilateral subdivision schemes , 2001, Comput. Aided Geom. Des..

[48]  Christoph M. Hoffmann,et al.  Geometric and Solid Modeling: An Introduction , 1989 .

[49]  PASCAL LIENHARDT,et al.  N-Dimensional Generalized Combinatorial Maps and Cellular Quasi-Manifolds , 1994, Int. J. Comput. Geom. Appl..

[50]  Ergun Akleman,et al.  Regular Mesh Construction Algorithms using Regular Handles , 2006, IEEE International Conference on Shape Modeling and Applications 2006 (SMI'06).

[51]  George W. Hart Rapid prototyping of geometric models , 2001, CCCG.

[52]  Ergun Akleman,et al.  An Interactive Shape Modeling System for Robust Design of Functional 3D Shapes , 2001, Proceedings of the 21st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA).

[53]  David P. Dobkin,et al.  Primitives for the manipulation of three-dimensional subdivisions , 1987, SCG '87.

[54]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[55]  L. J. Boya,et al.  On Regular Polytopes , 2012, 1210.0601.

[56]  Christoph M. Hoffmann,et al.  Geometric and Solid Modeling , 1989 .

[57]  Carlo H. Séquin,et al.  My Search for Symmetrical Embeddings of Regular Maps , 2010 .

[58]  J. Clark,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[59]  Frithjof Kruggel,et al.  A fast algorithm for generating large tetrahedral 3D finite element meshes from magnetic resonance tomograms , 1998, Proceedings. Workshop on Biomedical Image Analysis (Cat. No.98EX162).

[60]  Jarke J. van Wijk,et al.  Symmetric tiling of closed surfaces: visualization of regular maps , 2009, ACM Trans. Graph..

[61]  Jessica K. Hodgins,et al.  Graphical modeling and animation of ductile fracture , 2002, SIGGRAPH.

[62]  Leonidas J. Guibas,et al.  Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.

[63]  Carlo H. Séquin,et al.  Keizo Ushio's sculptures, split tori and Möbius bands , 2007 .

[64]  Ergun Akleman,et al.  Paper-Strip Sculptures , 2010, 2010 Shape Modeling International Conference.

[65]  Brian Wyvill,et al.  Introduction to Implicit Surfaces , 1997 .

[66]  Martti Mäntylä,et al.  Introduction to Solid Modeling , 1988 .

[67]  W. Thurston On Proof and Progress in Mathematics , 1994, math/9404236.

[68]  G. C. Shephard,et al.  A CATALOGUE OF ISONEMAL FABRICS , 1985 .

[69]  Stephan Freytag An Introduction To Splines For Use In Computer Graphics And Geometric Modeling , 2016 .

[70]  B. Lévy,et al.  L p Centroidal Voronoi Tessellation and its applications , 2010, SIGGRAPH 2010.

[71]  Hiroshi Masuda,et al.  Coding topological structure of 3D CAD models , 2000, Comput. Aided Des..

[72]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[73]  J. V. van Wijk Symmetric tiling of closed surfaces: visualization of regular maps , 2009, SIGGRAPH '09.

[74]  Ergun Akleman,et al.  Local mesh operators: extrusions revisited , 2005, International Conference on Shape Modeling and Applications 2005 (SMI' 05).

[75]  Bruce G. Baumgart Winged edge polyhedron representation. , 1972 .

[76]  SeidelHans-Peter,et al.  Directed edgesA scalable representation for triangle meshes , 1998 .

[77]  Carlo Cattani,et al.  Dimension-independent modeling with simplicial complexes , 1993, TOGS.

[78]  Esan Mandal,et al.  Remeshing Schemes for semi-regular tilings , 2005, International Conference on Shape Modeling and Applications 2005 (SMI' 05).

[79]  Michael F. Barnsley,et al.  Fractals Everywhere: New Edition , 2012 .

[80]  Bruce G. Baumgart A polyhedron representation for computer vision , 1975, AFIPS '75.

[81]  Sven Havemann,et al.  Generative mesh modeling , 2005 .

[82]  Leila De Floriani,et al.  Two data structures for building tetrahedralizations , 2005, The Visual Computer.

[83]  Ergun Akleman,et al.  Interactive Face-Replacements for Modeling Detailed Shapes , 2006, GMP.

[84]  David Spring The Golden Age of Immersion Theory in Topology: 1959-1973 , 2003 .

[85]  Zhang Hong-xin,et al.  Honeycomb subdivision , 2001 .

[86]  Lucye Guilbeau The History of the Solution of the Cubic Equation , 1930 .

[87]  Kevin Weiler,et al.  Edge-Based Data Structures for Solid Modeling in Curved-Surface Environments , 1985, IEEE Computer Graphics and Applications.

[88]  Scott Schaefer,et al.  Smooth subdivision of tetrahedral meshes , 2004, SGP '04.

[89]  Ergun Akleman,et al.  Pattern mapping with quad-pattern-coverable quad-meshes , 2011, SIGGRAPH '11.

[90]  Michael F. Barnsley,et al.  Fractals everywhere , 1988 .

[91]  Mathieu Desbrun,et al.  Discrete Differential Geometry , 2008 .

[92]  Christoph M. Hoffmann,et al.  Fundamental Techniques for Geometric and Solid Modeling , 1991 .

[93]  David Tall,et al.  Building Theories: The Three Worlds of Mathematics. , 2004 .

[94]  Ergun Akleman,et al.  Semiregular pentagonal subdivisions , 2004, Proceedings Shape Modeling Applications, 2004..

[95]  Carlo H. Séquin,et al.  On the number of Klein bottle types , 2013 .

[96]  Jarek Rossignac,et al.  SOT: compact representation for tetrahedral meshes , 2009, Symposium on Solid and Physical Modeling.

[97]  Ang Yan Sheng,et al.  Discrete Differential Geometry , 2017 .

[98]  Erik Brisson,et al.  Representing geometric structures in d dimensions: topology and order , 1989, SCG '89.

[99]  Ergun Akleman,et al.  Regular meshes , 2005, SPM '05.

[100]  Ergun Akleman,et al.  Guaranteeing the 2-Manifold Property for Meshes with doubly Linked Face List , 1999, Int. J. Shape Model..

[101]  E. Akleman,et al.  Cyclic plain-weaving on polygonal mesh surfaces with graph rotation systems , 2009, SIGGRAPH '09.

[102]  Christian Rössl,et al.  Geometric modeling based on triangle meshes , 2006, Eurographics.

[103]  Ergun Akleman,et al.  A minimal and complete set of operators for the development of robust manifold mesh modelers , 2003, Graph. Model..

[104]  Valerio Pascucci,et al.  Spectral surface quadrangulation , 2006, SIGGRAPH '06.

[105]  Chenglei Yang,et al.  On centroidal voronoi tessellation—energy smoothness and fast computation , 2009, TOGS.

[106]  Pascal Lienhardt,et al.  Subdivisions of n-dimensional spaces and n-dimensional generalized maps , 1989, SCG '89.

[107]  Jonathan L. Gross,et al.  Handbook of graph theory , 2007, Discrete mathematics and its applications.

[108]  Jin Huang,et al.  A wave-based anisotropic quadrangulation method , 2010, SIGGRAPH 2010.

[109]  Ergun Akleman,et al.  Connected & manifold Sierpinsky polyhedra , 2004, SM '04.

[110]  Malcolm A. Sabin,et al.  Behaviour of recursive division surfaces near extraordinary points , 1998 .

[111]  Martin Isenburg,et al.  Streaming compression of tetrahedral volume meshes , 2006, Graphics Interface.

[112]  Martin Kraus,et al.  Texture-encoded tetrahedral strips , 2004, 2004 IEEE Symposium on Volume Visualization and Graphics.