Privacy-Preserving Spatio-Temporal Patient Data Publishing

As more data become available to the public, the value of information seems to be diminishing with concern over what constitute privacy of individual. Despite benefit to data publishing, preserving privacy of individuals remains a major concern because linking of data from heterogeneous source become easier due to the vast availability of artificial intelligence tools. In this paper, we focus on preserving privacy of spatio-temporal data publishing. Specifically, we present a framework consisting of (i) a 5-level temporal hierarchy to protect the temporal attributes and (ii) temporal representative point (TRP) differential privacy to protect the spatial attributes. Evaluation results on big datasets show that our framework keeps a good balance of utility and privacy. To a further extent, our solution is expected be extendable for privacy-preserving data publishing for the spatio-temporal data of coronavirus disease 2019 (COVID-19) patients.

[1]  Cynthia Dwork,et al.  Differential Privacy , 2006, ICALP.

[2]  ASHWIN MACHANAVAJJHALA,et al.  L-diversity: privacy beyond k-anonymity , 2006, 22nd International Conference on Data Engineering (ICDE'06).

[3]  Francesco Bonchi,et al.  Never Walk Alone: Uncertainty for Anonymity in Moving Objects Databases , 2008, 2008 IEEE 24th International Conference on Data Engineering.

[4]  Catuscia Palamidessi,et al.  Geo-indistinguishability: differential privacy for location-based systems , 2012, CCS.

[5]  Carson K. Leung,et al.  Interactive Mining of Strong Friends from Social Networks and Its Applications in E-Commerce , 2014, J. Organ. Comput. Electron. Commer..

[6]  Benjamin C. M. Fung,et al.  Walking in the crowd: anonymizing trajectory data for pattern analysis , 2009, CIKM.

[7]  Philippe Fournier-Viger,et al.  A Metaheuristic Algorithm for Hiding Sensitive Itemsets , 2018, DEXA.

[8]  Fotios Petropoulos,et al.  Forecasting with temporal hierarchies , 2017, Eur. J. Oper. Res..

[9]  Jure Leskovec,et al.  Friendship and mobility: user movement in location-based social networks , 2011, KDD.

[10]  Claude Castelluccia,et al.  Study : Privacy Preserving Release of Spatio-temporal Density in Paris , 2014 .

[11]  Carson Kai-Sang Leung,et al.  Interactive discovery of influential friends from social networks , 2014, Social Network Analysis and Mining.

[12]  Philip S. Yu,et al.  Privacy-preserving data publishing: A survey of recent developments , 2010, CSUR.

[13]  Anifat M. Olawoyin,et al.  Predicting the Future with Artificial Neural Network , 2018 .

[14]  Laks V. S. Lakshmanan,et al.  The segment support map: scalable mining of frequent itemsets , 2000, SKDD.

[15]  Harshit Kumar,et al.  Efficient Fuzzy Ranking for Keyword Search on Graphs , 2012, DEXA.

[16]  João P. Vilela,et al.  Privacy-Preserving Data Mining: Methods, Metrics, and Applications , 2017, IEEE Access.

[17]  Wookey Lee,et al.  STDP: Secure Privacy-Preserving Trajectory Data Publishing , 2018, 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData).

[18]  Alfredo Cuzzocrea,et al.  An Intelligent Predictive Analytics System for Transportation Analytics on Open Data Towards the Development of a Smart City , 2019, CISIS.

[19]  Alfredo Cuzzocrea,et al.  Privacy-Preserving Frequent Pattern Mining from Big Uncertain Data , 2018, 2018 IEEE International Conference on Big Data (Big Data).

[20]  Stéphane Bressan,et al.  Differential Privacy for Regularised Linear Regression , 2018, DEXA.

[21]  Wookey Lee,et al.  Effective privacy preserving data publishing by vectorization , 2020, Inf. Sci..

[22]  Wookey Lee,et al.  Scalable Vertical Mining for Big Data Analytics of Frequent Itemsets , 2018, DEXA.

[23]  Masatoshi Yoshikawa,et al.  Quantifying Differential Privacy under Temporal Correlations , 2016, 2017 IEEE 33rd International Conference on Data Engineering (ICDE).

[24]  Ladjel Bellatreche,et al.  LogLInc: LoG Queries of Linked Open Data Investigator for Cube Design , 2019, DEXA.

[25]  Ninghui Li,et al.  t-Closeness: Privacy Beyond k-Anonymity and l-Diversity , 2007, 2007 IEEE 23rd International Conference on Data Engineering.

[26]  Alfredo Cuzzocrea,et al.  Fast Privacy-Preserving Keyword Search on Encrypted Outsourced Data , 2019, 2019 IEEE International Conference on Big Data (Big Data).

[27]  Li Xiong,et al.  Protecting Locations with Differential Privacy under Temporal Correlations , 2014, CCS.

[28]  David J. DeWitt,et al.  Incognito: efficient full-domain K-anonymity , 2005, SIGMOD '05.

[29]  Xing Xie,et al.  GeoLife: A Collaborative Social Networking Service among User, Location and Trajectory , 2010, IEEE Data Eng. Bull..