LIO-IDS: Handling class imbalance using LSTM and improved one-vs-one technique in intrusion detection system

[1]  Yang Yu,et al.  Integration of an improved dynamic ensemble selection approach to enhance one-vs-one scheme , 2018, Eng. Appl. Artif. Intell..

[2]  Mohammad Masdari,et al.  A survey and taxonomy of the fuzzy signature-based Intrusion Detection Systems , 2020, Appl. Soft Comput..

[3]  Mohamed Amine Ferrag,et al.  Deep learning for cyber security intrusion detection: Approaches, datasets, and comparative study , 2020, J. Inf. Secur. Appl..

[4]  Jesus Olivares-Mercado,et al.  Synthetic Minority Oversampling Technique for Optimizing Classification Tasks in Botnet and Intrusion-Detection-System Datasets , 2020, Applied Sciences.

[5]  Parvez Faruki,et al.  Network Intrusion Detection for IoT Security Based on Learning Techniques , 2019, IEEE Communications Surveys & Tutorials.

[6]  Norman Kerle,et al.  Post-Disaster Recovery Monitoring with Google Earth Engine , 2020 .

[7]  Nitesh V. Chawla,et al.  SMOTE: Synthetic Minority Over-sampling Technique , 2002, J. Artif. Intell. Res..

[8]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[9]  Iraj Mahdavi,et al.  Anomaly network-based intrusion detection system using a reliable hybrid artificial bee colony and AdaBoost algorithms , 2019, J. King Saud Univ. Comput. Inf. Sci..

[10]  Kaushik Roy,et al.  Anomaly Detection Using Bidirectional LSTM , 2020, IntelliSys.

[11]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[12]  Abdelouahid Derhab,et al.  Deep learning approaches for anomaly-based intrusion detection systems: A survey, taxonomy, and open issues , 2020, Knowl. Based Syst..

[13]  Sheng Wang,et al.  BAT: Deep Learning Methods on Network Intrusion Detection Using NSL-KDD Dataset , 2020, IEEE Access.

[14]  EMMANOUIL VASILOMANOLAKIS,et al.  Taxonomy and Survey of Collaborative Intrusion Detection , 2015, ACM Comput. Surv..

[15]  Sikha Bagui,et al.  Resampling imbalanced data for network intrusion detection datasets , 2021, J. Big Data.

[16]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[17]  Hui Han,et al.  Borderline-SMOTE: A New Over-Sampling Method in Imbalanced Data Sets Learning , 2005, ICIC.

[18]  Qi Li,et al.  DL-IDS: Extracting Features Using CNN-LSTM Hybrid Network for Intrusion Detection System , 2020, Secur. Commun. Networks.

[19]  K. P. Soman,et al.  Deep Learning Approach for Intelligent Intrusion Detection System , 2019, IEEE Access.

[20]  Ali A. Ghorbani,et al.  Toward Generating a New Intrusion Detection Dataset and Intrusion Traffic Characterization , 2018, ICISSP.

[21]  Francisco Herrera,et al.  DRCW-OVO: Distance-based relative competence weighting combination for One-vs-One strategy in multi-class problems , 2015, Pattern Recognit..

[22]  Yiqiang Sheng,et al.  HAST-IDS: Learning Hierarchical Spatial-Temporal Features Using Deep Neural Networks to Improve Intrusion Detection , 2018, IEEE Access.

[23]  Amit Kumar Tyagi,et al.  Necessary Information to Know to Solve Class Imbalance Problem: From a User’s Perspective , 2020 .

[24]  Punam Bedi,et al.  Siam-IDS: Handling class imbalance problem in Intrusion Detection Systems using Siamese Neural Network , 2020 .

[25]  Ing-Ray Chen,et al.  A survey of intrusion detection techniques for cyber-physical systems , 2014, ACM Comput. Surv..

[26]  Mohammed Awad,et al.  Using weighted Support Vector Machine to address the imbalanced classes problem of Intrusion Detection System , 2018, KSII Trans. Internet Inf. Syst..

[27]  Erhan Guven,et al.  A Survey of Data Mining and Machine Learning Methods for Cyber Security Intrusion Detection , 2016, IEEE Communications Surveys & Tutorials.

[28]  Yijing Li,et al.  Learning from class-imbalanced data: Review of methods and applications , 2017, Expert Syst. Appl..

[29]  Hongpo Zhang,et al.  An effective convolutional neural network based on SMOTE and Gaussian mixture model for intrusion detection in imbalanced dataset , 2020, Comput. Networks.

[30]  Trevor Hastie,et al.  Multi-class AdaBoost ∗ , 2009 .

[31]  Prabhu Jayagopal,et al.  A preprocessing method combined with an ensemble framework for the multiclass imbalanced data classification , 2019 .

[32]  El-Sayed M. El-Alfy,et al.  Hybrid multicriteria fuzzy classification of network traffic patterns, anomalies, and protocols , 2017, Personal and Ubiquitous Computing.

[33]  Craig A. Knoblock,et al.  A Survey of Digital Map Processing Techniques , 2014, ACM Comput. Surv..

[34]  Punam Bedi,et al.  I-SiamIDS: an improved Siam-IDS for handling class imbalance in network-based intrusion detection systems , 2020, Appl. Intell..

[35]  Yuefei Zhu,et al.  A Deep Learning Approach for Intrusion Detection Using Recurrent Neural Networks , 2017, IEEE Access.

[36]  Abdullah Al Nahid,et al.  Effective Intrusion Detection System Using XGBoost , 2018, Inf..

[37]  Ali Bou Nassif,et al.  Dimensionality reduction with IG-PCA and ensemble classifier for network intrusion detection , 2019, Comput. Networks.

[38]  Guang Cheng,et al.  An Efficient Network Intrusion Detection System Based on Feature Selection and Ensemble Classifier , 2019, ArXiv.

[39]  Joseph W. Mikhail,et al.  A Semi-Boosted Nested Model With Sensitivity-Based Weighted Binarization for Multi-Domain Network Intrusion Detection , 2019, ACM Trans. Intell. Syst. Technol..

[40]  Hien M. Nguyen,et al.  Borderline over-sampling for imbalanced data classification , 2009, Int. J. Knowl. Eng. Soft Data Paradigms.

[41]  Nikola S. Nikolov,et al.  A survey on bandwidth-aware geo-distributed frameworks for big-data analytics , 2021, J. Big Data.

[42]  Yoav Freund,et al.  A Short Introduction to Boosting , 1999 .

[43]  Yang Liu,et al.  A method for multi-class sentiment classification based on an improved one-vs-one (OVO) strategy and the support vector machine (SVM) algorithm , 2017, Inf. Sci..

[44]  Mounir Ghogho,et al.  Deep learning approach for Network Intrusion Detection in Software Defined Networking , 2016, 2016 International Conference on Wireless Networks and Mobile Communications (WINCOM).

[45]  Gagandeep Kaur,et al.  A comparison of two hybrid ensemble techniques for network anomaly detection in spark distributed environment , 2020, J. Inf. Secur. Appl..

[46]  Robert C. Atkinson,et al.  A Taxonomy of Network Threats and the Effect of Current Datasets on Intrusion Detection Systems , 2020, IEEE Access.

[47]  Taghi M. Khoshgoftaar,et al.  A survey on addressing high-class imbalance in big data , 2018, Journal of Big Data.

[48]  Bartosz Krawczyk,et al.  Learning from imbalanced data: open challenges and future directions , 2016, Progress in Artificial Intelligence.

[49]  Panagiotis G. Sarigiannidis,et al.  Securing the Smart Grid: A Comprehensive Compilation of Intrusion Detection and Prevention Systems , 2019, IEEE Access.

[50]  Yi Zhuang,et al.  BAHK: Flexible Automated Binary Analysis Method with the Assistance of Hardware and System Kernel , 2020, Secur. Commun. Networks.

[51]  Kaushik Roy,et al.  LSTM for Anomaly-Based Network Intrusion Detection , 2018, 2018 28th International Telecommunication Networks and Applications Conference (ITNAC).

[52]  Andreas Hotho,et al.  Flow-based benchmark data sets for intrusion detection , 2017 .