Nonlinear Vibration of Multi-walled Carbon Nanotubes

The nonlinear vibration behavior of a multi-walled carbon nanotube is investigated based on an elastic multi-layer shell model with van der Waals interaction taken into consideration. The multi-walled carbon nanotube is described as an individual elastic shell and the interlayer friction is negligible between the inner and outer tubes in the proposed model. And the Donnell equations of cylindrical shells are employed to describe the nonlinear behavior of the multi-walled carbon nanotubes. The van der Waals interaction between each layer of the nanotubes is simulated based on a new model. Numerical analyses are carried out to simulate several nonlinear vibration processes of different nanotubes. Following results show that the presence of van der Waals interaction forces can strongly influence the buckling and nonlinear vibration of the multi-walled carbon nanotubes.

[1]  Phaedon Avouris,et al.  Deformation of carbon nanotubes by surface van der Waals forces , 1998 .

[2]  R. Superfine,et al.  Bending and buckling of carbon nanotubes under large strain , 1997, Nature.

[3]  A. Mioduchowski,et al.  Sound wave propagation in multiwall carbon nanotubes , 2003 .

[4]  R. Ruoff,et al.  Structural properties of a carbon-nanotube crystal. , 1994, Physical review letters.

[5]  C. Ru,et al.  Elastic buckling of single-walled carbon nanotube ropes under high pressure , 2000 .

[6]  Y. Huang 8.16 – Mechanics of Nanotubes , 2003 .

[7]  Riichiro Saito,et al.  Anomalous potential barrier of double-wall carbon nanotube , 2001 .

[8]  Dong Qian,et al.  Mechanics of carbon nanotubes , 2002 .

[9]  R. Superfine,et al.  Nanometre-scale rolling and sliding of carbon nanotubes , 1999, Nature.

[10]  D. A. Evensen A theoretical and experimental study of the nonlinear flexural vibrations of thin circular rings , 1965 .

[11]  Jian Ping Lu Elastic Properties of Carbon Nanotubes and Nanoropes , 1997 .

[12]  Hui‐Shen Shen Postbuckling prediction of double-walled carbon nanotubes under hydrostatic pressure , 2004 .

[13]  Chunyu Li,et al.  Single-walled carbon nanotubes as ultrahigh frequency nanomechanical resonators , 2003 .

[14]  A. Mioduchowski,et al.  VIBRATION OF AN EMBEDDED MULTIWALL CARBON NANOTUBE , 2003 .

[15]  K. M. Liew,et al.  Buckling analysis of multi-walled carbon nanotubes: a continuum model accounting for van der Waals interaction , 2005 .

[16]  C. Q. Ru,et al.  Degraded axial buckling strain of multiwalled carbon nanotubes due to interlayer slips , 2001 .

[17]  N. DeClaris,et al.  Asymptotic methods in the theory of non-linear oscillations , 1963 .

[18]  Chengyuan Wang,et al.  Axisymmetric and beamlike vibrations of multiwall carbon nanotubes , 2005 .

[19]  C. Q. Ru,et al.  Effective bending stiffness of carbon nanotubes , 2000 .

[20]  Rodney S. Ruoff,et al.  Radial deformation of carbon nanotubes by van der Waals forces , 1993, Nature.

[21]  A. Mioduchowski,et al.  Applicability and Limitations of Simplified Elastic Shell Equations for Carbon Nanotubes , 2004 .

[22]  A. Mioduchowski,et al.  Axially compressed buckling of pressured multiwall carbon nanotubes , 2003 .

[23]  Toshiaki Natsuki,et al.  Wave propagation of carbon nanotubes embedded in an elastic medium , 2005 .

[24]  Chunyu Li,et al.  Vibrational behaviors of multiwalled-carbon-nanotube-based nanomechanical resonators , 2004 .

[25]  J. Bernholc,et al.  Nanomechanics of carbon tubes: Instabilities beyond linear response. , 1996, Physical review letters.